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Preface

Scientists often have the feeling that, through their work, they are learning about
some aspect of themselves. Physicists see this connection in their work; as do,
for example, psychologists and chemists. In the study of robotics, the connection
between the field of study and ourselves is unusually obvious. Unlike a science that
seeks only to analyze, robotics as currently pursued takes the engineering bent
toward synthesis. Perhaps it is for these reasons that the field fascinates so many
of us.

The study of robotics concerns itself with the desire to synthesize some aspects
of human function through the use of mechanisms, sensors, actuators, and computers.
Obviously, this is a huge undertaking, which seems certain to require a multitude of
ideas from various “classical” fields.

Currently, different aspects of robotics research are carried out by experts in
various fields. It is usually not the case that any single individual has the entire area
of robotics in his or her grasp. A partitioning of the field is natural to expect. At a
relatively high level of abstraction, splitting robotics into four major areas seems
reasonable: mechanical manipulation, locomotion, computer vision, and artificial
intelligence.

This book introduces the science and engineering of mechanical manipulation.
This subdiscipline of robotics has its foundations in several classical fields. The major
relevant fields are mechanics, control theory, and computer science. In this book,
Chapters 1 through 8 cover topics from mechanical engineering and mathematics,
Chapters 9 through 11 cover control-theoretical material, and Chapters 12 and 13
might be classed as computer-science material. Additionally, the book emphasizes
computational aspects of the problems throughout; for example, each chapter that
is concerned predominantly with mechanics has a brief section devoted to computa-
tional considerations.

This book evolved from class notes used to teach “Introduction to Robotics” at
Stanford University during the autumns of 1983 through 1985. The first three editions
have been used from 1986 to 2016. The fourth edition has benefited from this use,
and incorporates corrections and improvements due to feedback from many sources.
Thanks to all those who sent corrections to the author.

This book is appropriate for a senior undergraduate- or first-year graduate-
level course. It is helpful if the student has had one basic course in statics and
dynamics, a course in linear algebra, and can program in a high-level language.
Additionally, it is helpful, though not absolutely necessary, that the student have
completed an introductory course in control theory. One aim of the book is to
present material in a simple, intuitive way. Specifically, the audience need not be
strictly mechanical engineers, though much of the material is taken from that field.
At Stanford, many electrical engineers, computer scientists, and mathematicians
found the book quite readable.

5
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6 Preface

Directly, this book is of use to those engineers developing robotic systems, but
the material should be viewed as important background material for anyone who
will be involved with robotics. In much the same way that software developers have
usually studied at least some hardware, people not directly involved with the mechan-
ics and control of robots should have some such background as that offered by
this text.

Like the third edition, the fourth edition is organized into 13 chapters. The
material will fit comfortably into an academic semester; teaching the material
within an academic quarter will probably require the instructor to choose a couple
of chapters to omit. Even at that pace, all of the topics cannot be covered in great
depth. In some ways, the book is organized with this in mind; for example, most
chapters present only one approach to solving the problem at hand. One of the
challenges of writing this book has been in trying to do justice to the topics covered
within the time constraints of usual teaching situations. One method employed to
this end was to consider only material that directly affects the study of mechanical
manipulation.

At the end of each chapter is a set of exercises. Each exercise has been assigned
a difficulty factor, indicated in square brackets following the exercise’s number. Dif-
ficulties vary between [00] and [50], where [00] is trivial and [50] is an unsolved
research problem.1 Of course, what one person finds difficult, another might find
easy, so some readers may find the factors misleading in some cases. Nevertheless,
an effort has been made to appraise the difficulty of the exercises.

At the end of each chapter, there is a programming assignment in which the
student applies the subject matter of the corresponding chapter to a simple three-
jointed planar manipulator. This simple manipulator is complex enough to demon-
strate nearly all the principles of general manipulators without bogging the student
down in too much complexity. Each programming assignment builds upon the pre-
vious ones, until, at the end of the course, the student has an entire library of manip-
ulator software.

There are a total of 12 MATLAB exercises associated with Chapters 1 through
9. These exercises were developed by Prof. Robert L. Williams II of Ohio Univer-
sity, and we are greatly indebted to him for this contribution. These exercises can be
used with the Robotics Toolbox for MATLAB®2 created by Peter Corke, Principal
Research Scientist with CSIRO in Australia.

Chapter 1 is an introduction to the field of robotics. It introduces some back-
ground material, a few fundamental ideas, the adopted notation of the book, and it
previews the material in the later chapters.

Chapter 2 covers the mathematics used to describe positions and orientations
in 3-space. This is extremely important material: By definition, mechanical manip-
ulation concerns itself with moving objects (parts, tools, the robot itself) around in
space. We need ways to describe these actions in a way that is easily understood and
is as intuitive as possible.

Chapters 3 and 4 deal with the geometry of mechanical manipulators. They
introduce the branch of mechanical engineering known as kinematics, the study of

1I have adopted the same scale as in The Art of Computer Programming by D. Knuth
(Addison-Wesley).

2For the Robotics Toolbox for MATLAB®, go to https://petercorke.com/toolboxes/robotics-toolbox/

https://petercorke.com/toolboxes/robotics-toolbox/
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Preface 7

motion without regard to the forces that cause it. In these chapters, we deal with the
kinematics of manipulators, but restrict ourselves to static positioning problems.

Chapter 5 expands our investigation of kinematics to velocities and static
forces.

In Chapter 6, we deal for the first time with the forces and moments required
to cause motion of a manipulator. This is the problem of manipulator dynamics.

Chapter 7 is concerned with describing motions of the manipulator in terms of
trajectories through space.

Chapter 8 many topics related to the mechanical design of a manipulator. For
example, how many joints are appropriate, of what type should they be, and how
should they be arranged?

In Chapters 9 and 10, we study methods of controlling a manipulator (usually
with a computer) so that it will faithfully track a desired position trajectory through
space. Chapter 9 restricts attention to linear control methods; Chapter 10 extends
these considerations to the nonlinear realm.

Chapter 11 covers the field of active force control with a manipulator. That is,
we discuss how to control the application of forces by the manipulator. This mode of
control is important when the manipulator comes into contact with the environment
around it, such as during the washing of a window with a sponge.

Chapter 12 overviews methods of programming robots, specifically the
elements needed in a robot programming system, and the particular problems
associated with programming industrial robots.

Chapter 13 introduces off-line simulation and programming systems, which
represent the latest extension to the man–robot interface.

New to the Fourth Edition

• Additional exercises at the end of each chapter
• New section 8.9 on optical encoders
• New section 10.9 on adaptive control
• Updated material and references for changing technology
• Several new or updated figures
• More than 100 minor typos and other errors corrected

I would like to thank the many people who have contributed their time to
helping me with this book. First, my thanks to the students of Stanford’s ME219 in
the autumn of 1983 through 1985, who suffered through the first drafts, found many
errors, and provided many suggestions. Professor Bernard Roth has contributed in
many ways, both through constructive criticism of the manuscript and by providing
me with an environment in which to complete the first edition. At SILMA Inc.,
I enjoyed a stimulating environment, plus resources that aided in completing the
second edition. Dr. Jeff Kerr wrote the first draft of Chapter 8. Prof. Robert L.
Williams II contributed the MATLAB exercises found at the end of each chapter,
and Peter Corke expanded his Robotics Toolbox to support this book’s style of the
Denavit–Hartenberg notation. I owe a debt to my previous mentors in robotics:
Marc Raibert, Carl Ruoff, Tom Binford, and Bernard Roth.

Many others around Stanford, SILMA, Adept, and elsewhere have helped in
various ways—my thanks to John Mark Agosta, Mike Ali, Lynn Balling, Al Barr,
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8 Preface

Stephen Boyd, Chuck Buckley, Joel Burdick, Jim Callan, Brian Carlisle, Monique
Craig, Subas Desa, Tri Dai Do, Karl Garcia, Ashitava Ghosal, Chris Goad, Ron
Goldman, Bill Hamilton, Steve Holland, Peter Jackson, Eric Jacobs, Johann Jäger,
Paul James, Jeff Kerr, Oussama Khatib, Jim Kramer, Dave Lowe, Jim Maples, Dave
Marimont, Dave Meer, Kent Ohlund, Madhusudan Raghavan, Richard Roy, Ken
Salisbury, Bruce Shimano, Donalda Speight, Bob Tilove, Sandy Wells, and Dave
Williams.

I wish to thank Tom Robbins at Pearson for his guidance with the first and
second editions.

The students of Prof. Roth’s Robotics Class of 2002 at Stanford used the second
edition and forwarded many reminders of the mistakes that needed to get fixed for
the fourth edition.

Finally I wish to thank those helping with the fourth edition: Matt Marshall who
contributed some new end of chapter exercises as well as other helpful feedback; and
Julie Bai and Michelle Bayman at Pearson.

JJC
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C H A P T E R 1

Introduction

1.1 BACKGROUND
1.2 THE MECHANICS AND CONTROL OF MECHANICAL MANIPULATORS
1.3 NOTATION

1.1 BACKGROUND

The history of industrial automation is characterized by periods of rapid change in
popular methods. Either as a cause or, perhaps, an effect, such periods of change
in automation techniques seem closely tied to world economics. Use of the indus-
trial robot, which became identifiable as a unique device in the 1960s [1], along with
computer-aided design (CAD) systems and computer-aided manufacturing (CAM)
systems, characterizes the latest trends in the automation of the manufacturing pro-
cess. These technologies are leading industrial automation through another transi-
tion, the scope of which is still unknown [2].

In North America, there was much adoption of robotic equipment in the early
1980s, followed by a brief pull-back in the late 1980s. Since that time, the market
has been growing (see Fig. 1.1), although it is subject to economic swings, as are all
markets.

Figure 1.2 shows the number of robots being installed per year worldwide.
A major reason for the growth in the use of industrial robots is their declining cost
and increasing abilities. By 2025 it is estimated that the average manufacturing
employer will save 16% on labor by replacing human workers with robots. In some
countries, it is even more favorable to employ robots (see Fig. 1.3). As robots
become more cost effective at their jobs, and as human labor continues to become
more expensive, more and more industrial jobs become candidates for robotic auto-
mation. This is the single most important trend propelling growth of the industrial
robot market. A secondary trend is that, economics aside, as robots become more
capable, they become able to do more and more tasks that might be dangerous or
impossible for human workers to perform.

This book focuses on the mechanics and control of the most important form
of the industrial robot, the mechanical manipulator. Exactly what constitutes an
industrial robot is sometimes debated. Devices such as that shown in Fig. 1.4 are
always included, while numerically controlled (NC) milling machines usually are not.
The distinction lies somewhere in the sophistication of the programmability of the
device; if a mechanical device can be programmed to perform a wide variety of
applications, it is probably an industrial robot. Machines which are for the most part
limited to one class of task are considered fixed automation. For the purposes of this

9
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10 Chapter 1 Introduction
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FIGURE 1.1: Sales of industrial robots in North America in millions of U.S.
dollars. Source: Robotic Industries Association.
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FIGURE 1.2: Yearly installations of multipurpose industrial robots. Source: World
Robotics 2016.

text, the distinctions need not be debated; most material is of a basic nature that
applies to a wide variety of programmable machines.

By and large, the study of the mechanics and control of manipulators is
not a new science, but merely a collection of topics taken from “classical” fields.
Mechanical engineering contributes methodologies for the study of machines in
static and dynamic situations. Mathematics supplies tools for describing spatial
motions and other attributes of manipulators. Control theory provides tools for
designing and evaluating algorithms to realize desired motions or force applications.
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FIGURE 1.4: A modern 7 degree-of-freedom robot. Image courtesy KUKA Roboter
GmbH.
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12 Chapter 1 Introduction

Electrical-engineering techniques are brought to bear in the design of sensors
and interfaces for industrial robots, and computer science contributes a basis for
programming these devices to perform a desired task.

1.2 THE MECHANICS AND CONTROL OF MECHANICAL MANIPULATORS

The following sections will introduce some terminology, and briefly preview each of
the topics that will be covered in the text.

Description of Position and Orientation

In the study of robotics, we are constantly concerned with the location of objects in
three-dimensional space. These objects are the links of the manipulator, the parts
and tools with which it deals, and other objects in the manipulator’s environment.
At a crude but important level, these objects are described by just two attributes:
position and orientation. Naturally, one topic of immediate interest is the manner in
which we represent these quantities and manipulate them mathematically.

In order to describe the position and orientation of a body in space, we will
always attach a coordinate system, or frame, rigidly to the object. We will then pro-
ceed to describe the position and orientation of this frame with respect to some
reference coordinate system (see Fig. 1.5).

Any frame can serve as a reference system within which to express the posi-
tion and orientation of a body, so we often think of transforming or changing the
description of these attributes of a body from one frame to another. Chapter 2 will
discuss conventions and methodologies for dealing with the description of position
and orientation, and the mathematics of manipulating these quantities with respect
to various coordinate systems.

Z

Z

X

X

X

Z

Z

X

YY

Y

Y

FIGURE 1.5: Coordinate systems or “frames” are attached to the manipulator and to
objects in the environment.
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Section 1.2 The Mechanics and Control of Mechanical Manipulators 13

Developing good skills concerning the description of position and rotation of
rigid bodies is highly useful even in fields outside of robotics.

Forward Kinematics of Manipulators

Kinematics is the science of motion that treats motion without regard to the forces
which cause it. Within the science of kinematics, one studies position, velocity,
acceleration, and all higher order derivatives of the position variables (with respect
to time or any other variable(s)). Hence, the study of the kinematics of manipulators
refers to all the geometrical and time-based properties of the motion.

Manipulators consist of nearly rigid links, which are connected by joints that
allow relative motion of neighboring links. These joints are usually instrumented
with position sensors, which allow the relative position of neighboring links to be
measured. In the case of rotary or revolute joints, these displacements are called joint
angles. Some manipulators contain sliding (or prismatic) joints, in which the relative
displacement between links is a translation, sometimes called the joint offset.

The number of degrees of freedom that a manipulator possesses is the num-
ber of independent position variables that would have to be specified in order to
locate all parts of the mechanism. This is a general term used for any mechanism.
For example, a four-bar linkage has only one degree of freedom (even though there
are three moving members). In the case of typical industrial robots, because a manip-
ulator is usually an open kinematic chain, and because each joint position is usually
defined with a single variable, the number of joints equals the number of degrees
of freedom.

At the free end of the chain of links that make up the manipulator is the end-
effector. Depending on the intended application of the robot, the end-effector could
be a gripper, a welding torch, an electromagnet, or another device. We generally
describe the position of the manipulator by giving a description of the tool frame,
which is attached to the end-effector, relative to the base frame, which is attached to
the nonmoving base of the manipulator (see Fig. 1.6).

A very basic problem in the study of mechanical manipulation is called for-
ward kinematics. This is the static geometrical problem of computing the position
and orientation of the end-effector of the manipulator. Specifically, given a set of
joint angles, the forward kinematic problem is to compute the position and orien-
tation of the tool frame relative to the base frame. Sometimes, we think of this as
changing the representation of manipulator position from a joint space description
into a Cartesian space description.1 This problem will be explored in Chapter 3.

Inverse Kinematics of Manipulators

In Chapter 4, we will consider the problem of inverse kinematics. This problem is
posed as follows: Given the position and orientation of the end-effector of the manip-
ulator, calculate all possible sets of joint angles that could be used to attain this given
position and orientation (see Fig. 1.7). This is a fundamental problem in the practical
use of manipulators.

1By Cartesian space, we mean the space in which the position of a point is given with three numbers,
and in which the orientation of a body is given with three numbers. It is sometimes called task space or
operational space.
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FIGURE 1.6: Kinematic equations describe the tool frame relative to the base frame
as a function of the joint variables.
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FIGURE 1.7: For a given position and orientation of the tool frame, values for the joint
variables can be calculated via the inverse kinematics.
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Section 1.2 The Mechanics and Control of Mechanical Manipulators 15

This is a rather complicated geometrical problem that is routinely solved thou-
sands of times daily in human and other biological systems. In the case of an artificial
system like a robot, we will need to create an algorithm in the control computer that
can make this calculation. In some ways, solution of this problem is the most impor-
tant element in a manipulator system.

We can think of this problem as a mapping of “locations” in 3-D Cartesian
space to “locations” in the robot’s internal joint space. This need naturally arises any-
time a goal is specified in external 3-D space coordinates. Some early robots lacked
this algorithm—they were simply moved (sometimes by hand) to desired locations,
which were then recorded as a set of joint values (i.e., as a location in joint space)
for later playback. Obviously, if the robot is used purely in the mode of recording
and playback of joint locations and motions, no algorithm relating joint space to
Cartesian space is needed. These days, however, it is rare to find an industrial robot
that lacks this basic inverse kinematic algorithm.

The inverse kinematics problem is not as simple as the forward kinematics one.
Because the kinematic equations are nonlinear, their solution is not always easy (or
even possible) in a closed form. Also, questions about the existence of a solution and
about multiple solutions arise.

Study of these issues gives one an appreciation for what the human mind and
nervous system are accomplishing when we, seemingly without conscious thought,
move and manipulate objects with our arms and hands.

The existence or nonexistence of a kinematic solution defines the workspace
of a given manipulator. The lack of a solution means that the manipulator cannot
attain the desired position and orientation, because it lies outside of the manipula-
tor’s workspace.

Velocities, Static Forces, Singularities

In addition to dealing with static positioning problems, we may wish to analyze
manipulators in motion. Often, in performing velocity analysis of a mechanism, it is
convenient to define a matrix quantity called the Jacobian of the manipulator. The
Jacobian specifies a mapping from velocities in joint space to velocities in Cartesian
space (see Fig. 1.8). The nature of this mapping changes as the configuration of
the manipulator varies. At certain points, called singularities, this mapping is not
invertible. An understanding of the phenomenon is important to designers and
users of manipulators.

Consider the rear gunner in a World War I–vintage biplane fighter plane (illus-
trated in Fig. 1.9). While the pilot flies the plane from the front cockpit, the rear
gunner’s job is to shoot at enemy aircraft. To perform this task, his gun is mounted
in a mechanism that rotates about two axes, the motions being called azimuth and
elevation. Using these two motions (two degrees of freedom), the gunner can direct
his stream of bullets in any direction he desires in the upper hemisphere.

An enemy plane is spotted at azimuth one o’clock and elevation 25 degrees!
The gunner trains his stream of bullets on the enemy plane and tracks its motion so
as to hit it with a continuous stream of bullets for as long as possible. He succeeds
and thereby downs the enemy aircraft.

A second enemy plane is seen at azimuth one o’clock and elevation 70 degrees!
The gunner orients his gun and begins firing. The enemy plane is moving so as to
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FIGURE 1.8: The geometrical relationship between joint rates and velocity of the end-
effector can be described in a matrix called the Jacobian.

Elevation

Azimuth

FIGURE 1.9: A World War I biplane with a pilot and a rear gunner. The rear-gunner
mechanism is subject to the problem of singular positions.
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Section 1.2 The Mechanics and Control of Mechanical Manipulators 17

obtain a higher and higher elevation relative to the gunner’s plane. Soon the enemy
plane is passing nearly overhead. What’s this? The gunner is no longer able to keep
his stream of bullets trained on the enemy plane! He found that, as the enemy plane
flew overhead, he was required to change his azimuth at a very high rate. He was not
able to swing his gun in azimuth quickly enough, and the enemy plane escaped!

In the latter scenario, the lucky enemy pilot was saved by a singularity! The
gun’s orienting mechanism, while working well over most of its operating range,
becomes less than ideal when the gun is directed straight upwards or nearly so.
To track targets that pass through the position directly overhead, a very fast motion
around the azimuth axis is required. The closer the target passes to the point directly
overhead, the faster the gunner must turn the azimuth axis to track the target. If the
target flies directly over the gunner’s head, he would have to spin the gun on its
azimuth axis at infinite speed!

Should the gunner complain to the mechanism designer about this problem?
Could a better mechanism be designed to avoid this problem? It turns out that you
really can’t avoid the problem very easily. In fact, any two-degree-of-freedom ori-
enting mechanism that has exactly two rotational joints cannot avoid having this
problem. In the case of this mechanism, with the stream of bullets directed straight
up, their direction aligns with the axis of rotation of the azimuth rotation. This means
that, at exactly this point, the azimuth rotation does not cause a change in the direc-
tion of the stream of bullets. We know we need two degrees of freedom to orient the
stream of bullets, but, at this point, we have lost the effective use of one of the joints.
Our mechanism has become locally degenerate at this location, and behaves as if it
only has one degree of freedom (the elevation direction).

This kind of phenomenon is caused by what is called a singularity of the mech-
anism. All mechanisms are prone to these difficulties, including robots. Just as with
the rear gunner’s mechanism, these singularity conditions do not prevent a robot arm
from positioning anywhere within its workspace. However, they can cause problems
with motions of the arm in their neighborhood.

Manipulators do not always move through space; sometimes they are also
required to touch a workpiece or work surface and apply a static force. In this
case, the problem arises: Given a desired contact force and moment, what set of
joint torques is required to generate them? Once again, the Jacobian matrix of the
manipulator arises quite naturally in the solution of this problem.

Dynamics

Dynamics is a huge field of study devoted to studying the forces required to cause
motion. In order to accelerate a manipulator from rest, glide at a constant end-
effector velocity, and finally decelerate to a stop, a complex set of torque functions
must be applied by the joint actuators.2 The exact form of the required functions of
actuator torque depend on the spatial and temporal attributes of the path taken by
the end-effector and on the mass properties of the links and payload, friction in the
joints, and so on. One method of controlling a manipulator to follow a desired path
involves calculating these actuator torque functions by using the dynamic equations
of motion of the manipulator.

2We use joint actuators as the generic term for devices that power a manipulator—for example, electric
motors, hydraulic and pneumatic actuators, and muscles.
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Many of us have experienced lifting an object that is actually much lighter than
we expected (e.g., getting a container of milk from the refrigerator which we thought
was full, but was nearly empty). Such a misjudgment of payload can cause an unusual
lifting motion. This kind of observation indicates that the human control system is
more sophisticated than a purely kinematic scheme. Rather, our manipulation con-
trol system makes use of knowledge of mass and other dynamic effects. Likewise,
algorithms that we construct to control the motions of a robot manipulator should
take dynamics into account.

A second use of the dynamic equations of motion is in simulation. By refor-
mulating the dynamic equations so that acceleration is computed as a function of
actuator torque, it is possible to simulate how a manipulator would move under
application of a set of actuator torques (see Fig. 1.10). As computing power becomes
more and more cost effective, the use of simulations is growing in use and importance
in many fields.

In Chapter 6, we will develop dynamic equations of motion, which may be used
to control or simulate the motion of manipulators.

Trajectory Generation

A common way of causing a manipulator to move from here to there in a smooth,
controlled fashion is to cause each joint to move as specified by a smooth function
of time. Commonly, each joint starts and ends its motion at the same time, so that
the manipulator motion appears coordinated. Exactly how to compute these motion
functions is the problem of trajectory generation (see Fig. 1.11).

A

V

τ3

τ2

τ1

FIGURE 1.10: The relationship between the torques applied by the actuators and the
resulting motion of the manipulator is embodied in the dynamic equations of motion.
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B

A

θ2

θ1

θ3

θ2

θ3

FIGURE 1.11: In order to move the end-effector through space from point A to point
B, we must compute a trajectory for each joint to follow.

Often, a path is described not only by a desired destination but also by some
intermediate locations, or via points, through which the manipulator must pass en
route to the destination. In such instances, the term spline is sometimes used to refer
to a smooth function that passes through a set of via points.

In order to force the end-effector to follow a straight line (or other geometric
shape) through space, the desired motion must be converted to an equivalent set
of joint motions. This Cartesian trajectory generation will also be considered in
Chapter 7.

Manipulator Design and Sensors

Although manipulators are, in theory, universal devices applicable to many situ-
ations, economics generally dictate that the intended task domain influence the
mechanical design of the manipulator. Along with issues such as size, speed, and
load capability, the designer must also consider the number of joints and their
geometric arrangement. These considerations affect the manipulator’s workspace
size and quality, the stiffness of the manipulator structure, and other attributes.

The more joints a robot arm contains, the more dextrous and capable it will
be. Of course, it will also be harder and more expensive to build. In order to build
a useful robot, that can take two approaches: build a specialized robot for a spe-
cific task, or build a universal robot that would able to perform a wide variety of
tasks. In the case of a specialized robot, some careful thinking will yield a solution
for how many joints are needed. For example, a specialized robot designed solely
to place electronic components on a flat circuit board does not need to have more
than four joints. Three joints allow the position of the hand to attain any position in
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τ3

τ2

τ1 50 lbs

FIGURE 1.12: The design of a mechanical manipulator must address issues of actuator
choice, location, transmission system, structural stiffness, sensor location, and more.

three-dimensional space, with a fourth joint added to allow the hand to rotate the
grasped component about a vertical axis. In the case of a universal robot, it is interest-
ing that fundamental properties of the physical world we live in dictate the “correct”
minimum number of joints—that minimum number is six.

Integral to the design of the manipulator are issues involving the choice and
location of actuators, transmission systems, and internal-position (and sometimes
force) sensors (see Fig. 1.12). These and other design issues will be discussed in
Chapter 9.

Linear Position Control

Some manipulators are equipped with stepper motors or other actuators that can
directly execute a desired trajectory. However, the vast majority of manipulators
are driven by actuators that supply a force or a torque to cause motion of the links.
In this case, an algorithm is needed to compute torques that will cause the desired
motion. The problem of dynamics is central to the design of such algorithms, but
does not in itself constitute a solution. A primary concern of a position control sys-
tem is to automatically compensate for errors in knowledge of the parameters of a
system, and to suppress disturbances that tend to perturb the system from the desired
trajectory. To accomplish this, position and velocity sensors are monitored by the con-
trol algorithm, which computes torque commands for the actuators (see Fig. 1.13).
In Chapter 9, we will consider control algorithms whose synthesis is based on linear
approximations to the dynamics of a manipulator. These linear methods are preva-
lent in current industrial practice.

Nonlinear Position Control

Although control systems based on approximate linear models are popular in cur-
rent industrial robots, it is important to consider the complete nonlinear dynamics
of the manipulator when synthesizing control algorithms. Some industrial robots
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θ2

θ3

θ1 θ2

θ3

FIGURE 1.13: In order to cause the manipulator to follow the desired trajectory, a
position-control system must be implemented. Such a system uses feedback from
joint sensors to keep the manipulator on course.

are now being introduced which make use of nonlinear control algorithms in their
controllers. These nonlinear techniques of controlling a manipulator promise better
performance than do simpler linear schemes. Chapter 10 will introduce nonlinear
control systems for mechanical manipulators.

Force Control

The ability of a manipulator to control forces of contact when it touches parts, tools,
or work surfaces seems to be of great importance in applying manipulators to many
real-world tasks. Force control is complementary to position control, in that we usu-
ally think of only one or the other as applicable in a certain situation. When a manip-
ulator is moving in free space, only position control makes sense, because there is no
surface to react against. When a manipulator is touching a rigid surface, however,
position-control schemes can cause excessive forces to build up at the contact, or
cause contact to be lost with the surface when it was desired for some application.
Manipulators are rarely constrained by reaction surfaces in all directions simulta-
neously, so a mixed or hybrid control is required, with some directions controlled
by a position-control law and remaining directions controlled by a force-control law
(see Fig. 1.14). Chapter 11 introduces a methodology for implementing such a force-
control scheme.

A robot should be instructed to wash a window by maintaining a certain force
in the direction perpendicular to the plane of the glass, while following a motion
trajectory in directions tangent to the plane. Such split or hybrid control specifica-
tions are natural for such tasks.
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V

F

F

FIGURE 1.14: In order for a manipulator to slide across a surface while applying a
constant force, a hybrid position–force control system must be used.

Programming Robots

A robot programming language serves as the interface between the human user
and the industrial robot. Central questions arise: How are motions through space
described easily by the programmer? How are multiple manipulators programmed
so that they can work in parallel? How are sensor-based actions described in a
language?

Robot manipulators differentiate themselves from fixed automation by being
“flexible,” which means programmable. Not only are the movements of manipu-
lators programmable, but, through the use of sensors and communications with
other factory automation, manipulators can adapt to variations as the task proceeds
(see Fig. 1.15).

In typical robot systems, there is a shorthand way for a human user to instruct
the robot which path it is to follow. First of all, a special point on the hand (or perhaps
on a grasped tool) is specified by the user as the operational point, sometimes also
called the TCP (for Tool Center Point). Motions of the robot will be described by the
user in terms of desired locations of the operational point relative to a user-specified
coordinate system. Generally, the user will define this reference coordinate system
relative to the robot’s base coordinate system in some task-relevant location.

Most often, paths are constructed by specifying a sequence of via points. Via
points are specified relative to the reference coordinate system and denote locations
along the path through which the TCP should pass. Along with specifying the via
points, the user may also indicate that certain speeds of the TCP be used over vari-
ous portions of the path. Sometimes, other modifiers can also be specified to affect
the motion of the robot (e.g., different smoothness criteria, etc.). From these inputs,
the trajectory-generation algorithm must plan all the details of the motion: veloc-
ity profiles for the joints, time duration of the move, and so on. Hence, input to the
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FIGURE 1.15: Desired motions of the manipulator and end-effector, desired contact
forces, and complex manipulation strategies can be described in a robot program-
ming language.

trajectory-generation problem is generally given by constructs in the robot program-
ming language.

The sophistication of the user interface is becoming extremely important as
manipulators and other programmable automation are applied to more and more
demanding industrial applications. The problem of programming manipulators
encompasses all the issues of “traditional” computer programming, and so is
an extensive subject in itself. Additionally, some particular attributes of the
manipulator-programming problem cause additional issues to arise. Some of these
topics will be discussed in Chapter 12.

Off-Line Programming and Simulation

An off-line programming system is a robot programming environment that has been
sufficiently extended, generally by means of computer graphics, that the develop-
ment of robot programs can take place without access to the robot itself. A com-
mon argument raised in their favor is that an off-line programming system will not
cause production equipment (i.e., the robot) to be tied up when it needs to be repro-
grammed; hence, automated factories can stay in production mode a greater percent-
age of the time (see Fig. 1.16).

They also serve as a natural vehicle to tie computer-aided design (CAD)
databases used in the design phase of a product to the actual manufacturing of
the product. In some cases, this direct use of CAD data can dramatically reduce the
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FIGURE 1.16: Off-line programming systems, generally providing a computer graphics
interface, allow robots to be programmed without access to the robot itself during
programming.

programming time required for the manufacturing process. Chapter 13 discusses
the elements of industrial robot off-line programming systems.

1.3 NOTATION

Notation is always an issue in science and engineering. In this book, we use the fol-
lowing conventions:

1. Usually, variables written in uppercase represent vectors or matrices. Lower-
case variables are scalars.

2. Leading subscripts and superscripts identify which coordinate system a quan-
tity is written in. For example, AP represents a position vector written in coor-
dinate system {A}, and A

BR is a rotation matrix3 that specifies the relationship
between coordinate systems {A} and {B}.

3. Trailing superscripts are used (as widely accepted) for indicating the inverse or
transpose of a matrix (e.g., R−1, RT ).

4. Trailing subscripts are not subject to any strict convention, but may indicate a
vector component (e.g., x, y, or z) or may be used as a description, as in Pbolt,
the position of a bolt.

5. We will use many trigonometric functions. Our notation for the cosine of an
angle θ1 may take any of the following forms: cos θ1 = cθ1 = c1.

3This term will be introduced in Chapter 2.
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Vectors are taken to be column vectors; hence, row vectors will have the trans-
pose indicated explicitly.

A note on vector notation in general: Many mechanics texts treat vector quan-
tities at a very abstract level and routinely use vectors defined relative to different
coordinate systems in expressions. The clearest example is that of addition of vec-
tors which are given or known relative to differing reference systems. This is often
very convenient and leads to compact and somewhat elegant formulas. For exam-
ple, consider the angular velocity, 0ω4, of the last body in a series connection of four
rigid bodies (as in the links of a manipulator) relative to the fixed base of the chain.
Because angular velocities sum vectorially, we may write a very simple vector equa-
tion for the angular velocity of the final link:

0ω4 = 0ω1 + 1ω2 + 2ω3 + 3ω4. (1.1)

However, unless these quantities are expressed with respect to a common coordinate
system, they cannot be summed, and so, though elegant, equation (1.1) has hidden
much of the “work” of the computation. For the particular case of the study of
mechanical manipulators, statements like that of (1.1) hide the chore of bookkeeping
of coordinate systems, which is often the very idea that we need to deal with in practice.

Therefore, in this book, we carry frame-of-reference information in the nota-
tion for vectors, and we do not sum vectors unless they are in the same coordinate
system. In this way, we derive expressions that solve the “bookkeeping” problem and
can be applied directly to actual numerical computation.
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EXERCISES

1.1 [20] Make a chronology of major events in the development of industrial robots
over the past 40 years. See the Bibliography and general references.

1.2 [20] Make a chart showing the major applications of industrial robots (e.g., spot
welding, assembly, etc.) and the percentage of installed robots in use in each appli-
cation area. Base your chart on the most recent data you can find. See the Bibli-
ography and general references.

1.3 [40] Figure 1.3 shows how the cost effectiveness of industrial robots is increasing.
Find data on the cost of human labor in various specific industries (e.g., labor in the
auto industry, labor in the electronics assembly industry, labor in agriculture, etc.)
and create a graph showing how these costs compare to the use of robotics. You
should see that the robot cost curve “crosses” various human cost curves of dif-
ferent industries at different times. From this, derive approximate dates when
robotics first became cost effective for use in various industries.

1.4 [10] In a sentence or two, define kinematics, workspace, and trajectory.
1.5 [10] In a sentence or two, define frame, degree of freedom, and position control.
1.6 [10] In a sentence or two, define force control, and robot programming language.
1.7 [10] In a sentence or two, define nonlinear control, and off-line programming.
1.8 [20] Draw a graph about the usage of industrial robots in the last 10 years. See the

Bibliography and general references.
1.9 [20] Make a chart indicating how industrial robot costs will drop by 2025 with

advances in machine learning and computer vision. See the Bibliography and gen-
eral references.

1.10 [20] Make a chart showing the major users of industrial robots (e.g., aerospace,
automotive, etc.) and the percentage of installed robots in use in each industry.
Base your chart on the most recent data you can find (see the reference section).
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1.11 [30] Write a simple pseudo-language program for an industrial manipulator to pick
and place a cold drink bottle from a crate having 30 bottles equidistant at 8 cm by
8 cm center to center distance within a configuration of 5 rows and 6 columns.
The industrial manipulator is used to place these bottles on a single point on a
conveyor sequentially. Assume that the conveyor moves a bottle before the robot
places a new bottle.

1.12 [20] From your experience or exposure, give examples of both mechanical manip-
ulators and fixed automation machines. These could be applications or specific
devices.

1.13 [20] Why are six degrees of freedom (DOF) required for a PUMA (Programmable
Universal Machine for Assembly) manipulator?

1.14 [15] Using the notation of this book, compute

AP3 = S1
AP1 + C2

AP2

if θ1 = π

4
, θ2 = π

3
, AP1 =

⎡
⎣

2
2
6

⎤
⎦ , and AP2 =

⎡
⎣

4
2
6

⎤
⎦

1.15 [20] For the manipulator of Fig. 1.10 with electric motors supplying torques τ1, τ2,
and τ3, list pros and cons of placing the motors at the joints vs. using a belt-drive
system to place the motors at the robot base.

PROGRAMMING EXERCISE (PART 1)

Familiarize yourself with the computer you will use to do the programming exercises at
the end of each chapter. Make sure you can create and edit files, and can compile and
execute programs.

MATLAB EXERCISE 1

At the end of most chapters in this textbook, a MATLAB exercise is given. Generally,
these exercises ask the student to program the pertinent robotics mathematics in
MATLAB and then check the results of the Robotics Toolbox for MATLAB®. The
textbook assumes familiarity with MATLAB and linear algebra (matrix theory). Also,
the student must become familiar with the Robotics Toolbox for MATLAB®. For
MATLAB Exercise 1,

a) Familiarize yourself with the MATLAB programming environment if necessary.
At the MATLAB software prompt, try typing demo and help. Using the color-
coded MATLAB editor, learn how to create, edit, save, run, and debug m-files
(ASCII files with series of MATLAB statements). Learn how to create arrays
(matrices and vectors), and explore the built-in MATLAB linear-algebra functions
for matrix and vector multiplication, dot and cross products, transposes, determi-
nants, and inverses, and for the solution of linear equations. MATLAB is based on
the language C, but is generally much easier to use. Learn how to program logical
constructs and loops in MATLAB. Learn how to use subprograms and functions.
Learn how to use comments (%) for explaining your programs and tabs for easy
readability. Check out www.mathworks.com for more information and tutorials.
Advanced MATLAB users should become familiar with Simulink, the graphical
interface of MATLAB, and with the MATLAB Symbolic Toolbox.

b) Familiarize yourself with the Robotics Toolbox for MATLAB®, a third-party tool-
boxdevelopedbyPeterI.CorkeofCSIRO,PinjarraHills,Australia.Thisproduct can
be downloaded for free from https://petercorke.com/toolboxes/robotics-toolbox/.

http://www.mathworks.com
https://petercorke.com/toolboxes/robotics-toolbox/
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Follow the instructions on the site to install the Toolbox. Read the README file,
and familiarize yourself with the various functions available to the user. Down-
load the RTB manual which provides background information and detailed usage
information for all of the Toolbox functions. Don’t worry if you can’t understand
the purpose of these functions yet; they deal with robotics mathematics concepts
covered in Chapters 2 through 9 of this book.
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C H A P T E R 2

Spatial Descriptions
and Transformations

2.1 INTRODUCTION
2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES
2.3 MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME
2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS
2.5 SUMMARY OF INTERPRETATIONS
2.6 TRANSFORMATION ARITHMETIC
2.7 TRANSFORM EQUATIONS
2.8 MORE ON REPRESENTATION OF ORIENTATION
2.9 TRANSFORMATION OF FREE VECTORS
2.10 COMPUTATIONAL CONSIDERATIONS

2.1 INTRODUCTION

Robotic manipulation, by definition, implies that parts and tools will be moved
around in space by some sort of mechanism. This naturally leads to a need for
representing positions and the orientations of parts, of tools, and of the mechanism
itself. To define and manipulate mathematical quantities that represent position
and orientation, we must define coordinate systems and develop conventions for
representation. Many of the ideas developed here in the context of position and
orientation will form a basis for our later consideration of linear and rotational
velocities, forces, and torques.

We adopt the philosophy that somewhere there is a universe coordinate sys-
tem to which everything we discuss can be referenced. We will describe all positions
and orientations with respect to the universe coordinate system or with respect to
other Cartesian coordinate systems that are (or could be) defined relative to the
universe system.

2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES

A description is used to specify attributes of various objects with which a manipu-
lation system deals. These objects are parts, tools, and the manipulator itself. In this
section, we discuss the description of positions, of orientations, and of an entity that
contains both of these descriptions: the frame.

29
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Description of a Position

Once a coordinate system is established, we can locate any point in the universe with
a 3 × 1 position vector. Because we will often define many coordinate systems in
addition to the universe coordinate system, vectors must be tagged with information
identifying which coordinate system within which they are defined. In this book, vec-
tors are written with a leading superscript indicating the coordinate system to which
they are referenced (unless it is clear from context)—for example, AP . This means
that the components of AP have numerical values that indicate distances along the
axes of {A}. Each of these distances along an axis can be thought of as the result of
projecting the vector onto the corresponding axis.

Figure 2.1 pictorially represents a coordinate system, {A}, with three mutually
orthogonal unit vectors with solid heads. A point AP is represented as a vector and
can equivalently be thought of as a position in space, or simply as an ordered set of
three numbers. Individual elements of a vector are given the subscripts x, y, and z:

AP =
⎡
⎣

px

py

pz

⎤
⎦ . (2.1)

In summary, we will describe the position of a point in space with a position vector.
Other 3-tuple descriptions of the position of points, such as spherical or cylindrical
coordinate representations, will be discussed in the exercises at the end of the chapter.

Description of an Orientation

Often, we will find it necessary not only to represent a point in space, but also to
describe the orientation of a body in space. For example, if vector AP in Fig. 2.2
locates the point directly between the fingertips of a manipulator’s hand, the com-
plete location of the hand is still not specified until its orientation is also given.
Assuming that the manipulator has a sufficient number of joints,1 the hand could

AP

YA

ZA

XA

{A}

FIGURE 2.1: Vector relative to frame (example).

1How many are “sufficient” will be discussed in Chapters 3 and 4.
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AP
ZB

{A}

{B}

FIGURE 2.2: Locating an object in position and orientation.

be oriented arbitrarily while keeping the point between the fingertips at the same
position in space. In order to describe the orientation of a body, we will attach a
coordinate system to the body and then give a description of this coordinate system
relative to the reference system. In Fig. 2.2, coordinate system {B} has been attached
to the body in a known way. A description of {B} relative to {A} now suffices to give
the orientation of the body.

Thus, positions of points are described with vectors, and orientations of bodies
are described with an attached coordinate system. One way to describe the body-
attached coordinate system, {B}, is to write the unit vectors of its three principal
axes2 in terms of the coordinate system {A}.

We denote the unit vectors giving the principal directions of coordinate sys-
tem {B} as X̂B , ŶB , and ẐB . When written in terms of coordinate system {A}, they
are called AX̂B , AŶB , and AẐB . It will be convenient if we stack these three unit
vectors together as the columns of a 3 × 3 matrix, in the order AX̂B , AŶB , AẐB . We
will call this matrix a rotation matrix, and, because this particular rotation matrix
describes {B} relative to {A}, we name it with the notation A

BR (the choice of lead-
ing sub- and superscripts in the definition of rotation matrices will become clear in
following sections):

A
BR = [

AX̂B
AŶB

AẐB

] =
⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ . (2.2)

2It is often convenient to use three, although any two would suffice. (The third can always be recovered
by taking the cross product of the two given.)
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In summary, a set of three vectors may be used to specify an orientation. For conve-
nience, we will construct a 3 × 3 matrix that has these three vectors as its columns.
Hence, whereas the position of a point is represented with a vector, the orientation
of a body is represented with a matrix. In Section 2.8, we will consider some other
descriptions of orientation that require only three parameters.

We can give expressions for the scalars rij in (2.2) by noting that the components
of any vector are simply the projections of that vector onto the unit directions of its
reference frame. Hence, each component of A

BR in (2.2) can be written as the dot
product of a pair of unit vectors:

A
BR = [

AX̂B
AŶB

AẐB

] =
⎡
⎣

X̂B · X̂A ŶB · X̂A ẐB · X̂A

X̂B · ŶA ŶB · ŶA ẐB · ŶA

X̂B · ẐA ŶB · ẐA ẐB · ẐA

⎤
⎦ . (2.3)

In this case, we have omitted the leading superscripts in the rightmost matrix of (2.3).
In fact, the choice of frame in which to describe the unit vectors is arbitrary as long
as it is the same for each pair being dotted. The dot product of two unit vectors yields
the cosine of the angle between them, so it is clear why the components of rotation
matrices are often referred to as direction cosines.

Further inspection of (2.3) shows that the rows of the matrix are the unit vectors
of {A} expressed in {B}; that is,

A
BR = [

AX̂B
AŶB

AẐB

] =

⎡
⎢⎢⎣

BX̂T
A

BŶ T
A

BẐT
A

⎤
⎥⎥⎦ . (2.4)

Hence, B
AR, the description of frame {A} relative to {B}, is given by the transpose of

(2.3); that is,
B
AR = A

BRT . (2.5)

This suggests that the inverse of a rotation matrix is equal to its transpose, a fact that
can be easily verified as

A
BRT A

BR =

⎡
⎢⎢⎣

AX̂T
B

AŶ T
B

AẐT
B

⎤
⎥⎥⎦

[
AX̂B

AŶB
AẐB

] = I3, (2.6)

where I3 is the 3 × 3 identity matrix. Hence,

A
BR = B

AR−1 = B
ART . (2.7)

Indeed, from linear algebra [1], we know that the inverse of a matrix with
orthonormal columns is equal to its transpose. We have just shown this geometrically.

Description of a Frame

The information needed to completely specify the whereabouts of the manipulator
hand in Fig. 2.2 is a position and an orientation. The point on the body whose position
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we describe could be chosen arbitrarily, however. For convenience, the point whose
position we will describe is chosen as the origin of the body-attached frame. The situ-
ation of a position and an orientation pair arises so often in robotics that we define
an entity called a frame, which is a set of four vectors giving position and orientation
information. For example, in Fig. 2.2, one vector locates the fingertip position, and
three more describe its orientation. Equivalently, the description of a frame can be
thought of as a position vector and a rotation matrix. Note that a frame is a coor-
dinate system where, in addition to the orientation, we give a position vector which
locates its origin relative to some other embedding frame. For example, frame {B} is
described by A

BR and APBORG, where APBORG is the vector that locates the origin of
the frame {B}:

{B} = {A
BR, APBORG}. (2.8)

In Fig. 2.3, there are three frames that are shown along with the universe coordinate
system. Frames {A} and {B} are known relative to the universe coordinate system,
and frame {C} is known relative to frame {A}.

In Fig. 2.3, we introduce a graphical representation of frames, which is conve-
nient in visualizing frames. A frame is depicted by three arrows representing unit
vectors defining the principal axes of the frame. An arrow representing a vector is
drawn from one origin to another. This vector represents the position of the origin
at the head of the arrow in terms of the frame at the tail of the arrow. The direction
of this locating arrow tells us, for example, in Fig. 2.3, that {C} is known relative to
{A}, and not vice versa.

In summary, a frame can be used as a description of one coordinate system
relative to another. A frame encompasses two ideas by representing both position
and orientation, and so may be thought of as a generalization of those two ideas.
Positions could be represented by a frame whose rotation-matrix part is the identity
matrix and whose position-vector part locates the point being described. Likewise,

ZU

ZB

ZA

ZC

XC

YC

YA

YU

XU XB

YB

XA

{U}
{B}

{C}

{A}

FIGURE 2.3: Example of several frames.
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an orientation could be represented by a frame whose position-vector part was the
zero vector.

2.3 MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME

In a great many of the problems in robotics, we are concerned with expressing the
same quantity in terms of various reference coordinate systems. The previous section
introduced descriptions of positions, orientations, and frames; we now consider the
mathematics of mapping in order to change descriptions from frame to frame.

Mappings Involving Translated Frames

In Fig. 2.4, we have a position defined by the vector BP . We wish to express this point
in space in terms of frame {A}, when {A} has the same orientation as {B}. In this case,
{B} differs from {A} only by a translation, which is given by APBORG, a vector that
locates the origin of {B} relative to {A}.

Because both vectors are defined relative to frames of the same orientation, we
calculate the description of point P relative to {A}, AP , by vector addition:

AP = BP + APBORG. (2.9)

Note that only in the special case of equivalent orientations may we add vectors that
are defined in terms of different frames.

In this simple example, we have illustrated mapping a vector from one frame
to another. This idea of mapping, or changing the description from one frame to
another, is an extremely important concept. The quantity itself (here, a point in
space) is not changed; only its description is changed. This is illustrated in Fig. 2.4,

AP

BP

APBORG

YA

ZA

XA

{A}

YB

ZB

XB

{B}

FIGURE 2.4: Translational mapping.



“runall”
2021/5/17
page 35

�

�

�

�

�

�

�

�

Section 2.3 Mappings: Changing Descriptions from Frame to Frame 35

where the point described by BP is not translated, but remains the same, and instead
we have computed a new description of the same point, but now with respect to
system {A}.

We say that the vector APBORG defines this mapping because all the informa-
tion needed to perform the change in description is contained in APBORG (along with
the knowledge that the frames had equivalent orientation).

Mappings Involving Rotated Frames

Section 2.2 introduced the notion of describing an orientation by three unit vectors
denoting the principal axes of a body-attached coordinate system. For convenience,
we stack these three unit vectors together as the columns of a 3 × 3 matrix. We will
call this matrix a rotation matrix, and, if this particular rotation matrix describes {B}
relative to {A}, we name it with the notation A

BR.
Note that, by our definition, the columns of a rotation matrix all have unit

magnitude, and, further, that these unit vectors are orthogonal. As we saw earlier, a
consequence of this is that

A
BR = B

AR−1 = B
ART . (2.10)

Therefore, because the columns of A
BR are the unit vectors of {B} written in {A}, the

rows of A
BR are the unit vectors of {A} written in {B}.

So, a rotation matrix can be interpreted as a set of three column vectors, or as
a set of three row vectors, as follows:

A
BR = [

AX̂B
AŶB

AẐB

] =

⎡
⎢⎢⎣

BX̂T
A

BŶ T
A

BẐT
A

⎤
⎥⎥⎦ . (2.11)

As in Fig. 2.5, the situation will arise often where we know the definition of a vec-
tor with respect to some frame, {B}, and we would like to know its definition with
respect to another frame, {A}, where the origins of the two frames are coincident.
This computation is possible when a description of the orientation of {B} is known
relative to {A}. This orientation is given by the rotation matrix A

BR, whose columns
are the unit vectors of {B} written in {A}.

In order to calculate AP , we note that the components of any vector are simply
the projections of that vector onto the unit directions of its frame. The projection is
calculated as the vector dot product. Thus, we see that the components of AP may
be calculated as

Apx = BX̂A · BP,

Apy = BŶA · BP, and (2.12)

Apz = BẐA · BP.

In order to express (2.12) in terms of a rotation matrix multiplication, we note
from (2.11) that the rows of A

BR are BX̂A, BŶA, and BẐA. So (2.12) may be written
compactly, by using a rotation matrix, as

AP = A
BR BP. (2.13)
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BP

YA

YB

ZA

XB

ZB

XA

{A}{B}

FIGURE 2.5: Rotating the description of a vector.

Equation 2.13 implements a mapping—that is, it changes the description of a
vector—from BP , which describes a point in space relative to {B}, into AP , which is
a description of the same point, but expressed relative to {A}.

We now see that our notation is of great help in keeping track of mappings
and frames of reference. A helpful way of viewing the notation we have introduced
is to imagine that leading subscripts cancel the leading superscripts of the following
entity, for example, the Bs in (2.13).

EXAMPLE 2.1

Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about Ẑ by
30 degrees. Here, Ẑ is pointing out of the page.

Writing the unit vectors of {B} in terms of {A} and stacking them as the columns
of the rotation matrix, we obtain

A
BR =

⎡
⎣

0.866 −0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

⎤
⎦ . (2.14)

Given

BP =
⎡
⎣

0.0
2.0
0.0

⎤
⎦ , (2.15)

we calculate AP as

AP = A
BR BP =

⎡
⎣

−1.000
1.732
0.000

⎤
⎦ . (2.16)
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BP

XA

YA
YB

XB

{A}
{B}

FIGURE 2.6: {B} rotated 30 degrees about Ẑ.

Here, A
BR acts as a mapping that is used to describe BP relative to frame {A},

AP . As was introduced in the case of translations, it is important to remember that,
viewed as a mapping, the original vector P is not changed in space. Rather, we com-
pute a new description of the vector relative to another frame.

Mappings Involving General Frames

Very often, we know the description of a vector with respect to some frame {B}, and
we would like to know its description with respect to another frame, {A}. We now
consider the general case of mapping. Here, the origin of frame {B} is not coincident
with that of frame {A} but has a general vector offset. The vector that locates {B}’s
origin is called APBORG. Also, {B} is rotated with respect to {A}, as described by A

BR.
Given BP , we wish to compute AP , as in Fig. 2.7.

We can first change BP to its description relative to an intermediate frame that
has the same orientation as {A}, but whose origin is coincident with the origin of {B}.
This is done by premultiplying by A

BR as in the last section. We then account for the
translation between origins by simple vector addition, as before, and obtain

AP = A
BR BP + APBORG. (2.17)

Equation 2.17 describes a general transformation mapping of a vector from its
description in one frame to a description in a second frame. Note the following
interpretation of our notation as exemplified in (2.17): the B’s cancel, leaving all
quantities as vectors written in terms of A, which may then be added.

The form of (2.17) is not as appealing as the conceptual form

AP = A
BT BP. (2.18)

That is, we would like to think of a mapping from one frame to another as an oper-
ator in matrix form. This aids in writing compact equations, and is conceptually
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AP BP

APBORG

YA

ZA

XA

{A}

YB

ZB

XB

{B}

FIGURE 2.7: General transform of a vector.

clearer than (2.17). In order that we may write the mathematics given in (2.17) in
the matrix operator form suggested by (2.18), we define a 4 × 4 matrix operator and
use 4 × 1 position vectors, so that (2.18) has the structure

[
AP

1

]
=

[
A
BR APBORG

0 0 0 1

] [
BP

1

]
. (2.19)

In other words,

1. a “1” is added as the last element of the 4 × 1 vectors, and;
2. a row “[0 0 0 1]” is added as the last row of the 4 × 4 matrix.

We adopt the convention that a position vector is 3 × 1 or 4 × 1, depending on
whether it appears multiplied by a 3 × 3 matrix or by a 4 × 4 matrix. It is readily seen
that (2.19) implements

AP = A
BR BP + APBORG

1 = 1. (2.20)

The 4 × 4 matrix in (2.19) is called a homogeneous transform. For our purposes,
it can be regarded purely as a construction used to cast the rotation and translation
of the general transform into a single matrix form. In other fields of study, it can be
used to compute perspective and scaling operations (when the last row is other than
“[0 0 0 1]” or the rotation matrix is not orthonormal). The interested reader should
see [2].

Often, we will write an equation like (2.18) without any notation indicating
that it is a homogeneous representation, because it is obvious from context. Note
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that, although homogeneous transforms are useful in writing compact equations, a
computer program to transform vectors would generally not use them, because of
time wasted multiplying ones and zeros. Thus, this representation is mainly for our
convenience when thinking and writing equations down on paper.

Just as we used rotation matrices to specify an orientation, we will use trans-
forms (usually in homogeneous representation) to specify a frame. Observe that,
although we have introduced homogeneous transforms in the context of mappings,
they also serve as descriptions of frames. The description of frame {B} relative to {A}
is A

BT .

EXAMPLE 2.2

Figure 2.8 shows a frame {B}, which is rotated relative to frame {A} about ẐA by
30 degrees, translated 10 units in X̂A, and translated 5 units in ŶA. Find AP , where
BP = [3.0 7.0 0.0]T .

The definition of frame {B} is

A
BT =

⎡
⎢⎢⎣

0.866 −0.500 0.000 10.0
0.500 0.866 0.000 5.0
0.000 0.000 1.000 0.0
0 0 0 1

⎤
⎥⎥⎦ . (2.21)

Given

BP =
⎡
⎣

3.0
7.0
0.0

⎤
⎦ , (2.22)

AP

BP

APBORG

XA

YA
{A}

YB

XB

{B}

FIGURE 2.8: Frame {B} rotated and translated.
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we use the definition of {B} just given as a transformation:

AP = A
BT BP =

⎡
⎣

9.098
12.562
0.000

⎤
⎦ . (2.23)

2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS

The same mathematical forms used to map points between frames can also be inter-
preted as operators that translate points, rotate vectors, or do both. This section
illustrates this interpretation of the mathematics we have already developed.

Translational Operators

A translation moves a point in space a finite distance along a given vector direction.
With this interpretation of actually translating the point in space, only one coordi-
nate system need be involved. It turns out that translating the point in space is
accomplished with the same mathematics as mapping the point to a second frame.
Almost always, it is very important to understand which interpretation of the
mathematics is being used. The distinction is as simple as this: When a vector is
moved “forward” relative to a frame, we may consider either that the vector moved
“forward” or that the frame moved “backward.” The mathematics involved in the
two cases is identical; only our view of the situation is different. Figure 2.9 indicates

AP1

AQ

AP2 AP1

ZA

YA

XA

{A}

FIGURE 2.9: Translation operator.
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pictorially how a vector AP1 is translated by a vector AQ. Here, the vector AQ gives
the information needed to perform the translation.

The result of the operation is a new vector AP2, calculated as

AP2 = AP1 + AQ. (2.24)

To write this translation operation as a matrix operator, we use the notation

AP2 = DQ(q) AP1, (2.25)

where q is the signed magnitude of the translation along the vector direction Q̂.
The DQ operator may be thought of as a homogeneous transform of a special
simple form:

DQ(q) =

⎡
⎢⎢⎣

1 0 0 qx

0 1 0 qy

0 0 1 qz

0 0 0 1

⎤
⎥⎥⎦ , (2.26)

where qx , qy , and qz are the components of the translation vector Q and

q =
√

q2
x + q2

y + q2
z . Equations (2.9) and (2.24) implement the same mathematics.

Note that, if we had defined BPAORG (instead of APBORG) in Fig. 2.4 and had used it
in (2.9), then we would have seen a sign change between (2.9) and (2.24). This sign
change would indicate the difference between moving the vector “forward” and
moving the coordinate system “backward.” By defining the location of {B} relative
to {A} (with APBORG), we cause the mathematics of the two interpretations to be
the same. Now that the “DQ” notation has been introduced, we may also use it to
describe frames and as a mapping.

Rotational Operators

Another interpretation of a rotation matrix is as a rotational operator that operates
on a vector AP1 and changes that vector to a new vector, AP2, by means of a rotation,
R. Usually, when a rotation matrix is shown as an operator, no sub- or superscripts
appear, because it is not viewed as relating two frames. That is, we may write

AP2 = R AP1. (2.27)

Again, as in the case of translations, the mathematics described in (2.13) and in (2.27)
are the same; only our interpretation is different. This fact also allows us to see how
to obtain rotational matrices that are to be used as operators:

The rotation matrix that rotates vectors through some rotation, R, is the same as
the rotation matrix that describes a frame rotated by R relative to the reference frame.

Although a rotation matrix is easily viewed as an operator, we will also define
another notation for a rotational operator that clearly indicates which axis is being
rotated about:

AP2 = RK(θ) AP1. (2.28)

In this notation, “RK(θ)” is a rotational operator that performs a rotation about
the axis direction K̂ by θ degrees. This operator can be written as a homogeneous
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transform whose position-vector part is zero. For example, substitution into (2.11)
yields the operator that rotates about the Ẑ axis by θ as

Rz(θ) =

⎡
⎢⎢⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (2.29)

Of course, to rotate a position vector, we could just as well use the 3 × 3 rotation-
matrix part of the homogeneous transform. The “RK” notation, therefore, may be
considered to represent a 3 × 3 or a 4 × 4 matrix. Later in this chapter, we will see
how to write the rotation matrix for a rotation about a general axis K̂ .

EXAMPLE 2.3

Figure 2.10 shows a vector AP1. We wish to compute the vector obtained by rotating
this vector about Ẑ by 30 degrees. We will call the new vector AP2.

The rotation matrix that rotates vectors by 30 degrees about Ẑ is the same as
the rotation matrix that describes a frame rotated 30 degrees about Ẑ relative to the
reference frame. Thus, the correct rotational operator is

Rz(30.0) =
⎡
⎣

0.866 −0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

⎤
⎦ . (2.30)

Given

AP1 =
⎡
⎣

0.0
2.0
0.0

⎤
⎦ , (2.31)

XA

YA

{A}

AP1

AP2

FIGURE 2.10: The vector AP1 rotated 30 degrees about Ẑ.
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we calculate AP2 as

AP2 = Rz(30.0) AP1 =
⎡
⎣

−1.000
1.732
0.000

⎤
⎦ . (2.32)

Equations (2.13) and (2.27) implement the same mathematics. Note that, if we
had defined B

AR (instead of A
BR) in (2.13), then the inverse of R would appear in (2.27).

This change would indicate the difference between rotating the vector “forward”
versus rotating the coordinate system “backward.” By defining the location of {B}
relative to {A} (by A

BR), we cause the mathematics of the two interpretations to be
the same.

Transformation Operators

As with vectors and rotation matrices, a frame has another interpretation as a trans-
formation operator. In this interpretation, only one coordinate system is involved,
so the symbol T is used without sub- or superscripts. The operator T rotates and
translates a vector AP1 to compute a new vector,

AP2 = T AP1. (2.33)

Again, as in the case of rotations, the mathematics described in (2.18) and in (2.33)
are the same, only our interpretation is different. This fact also allows us to see how
to obtain homogeneous transforms that are to be used as operators:

The transform that rotates by R and translates by Q is the same as the transform
that describes a frame rotated by R and translated by Q relative to the reference frame.

A transform is usually thought of as being in the form of a homogeneous trans-
form with general rotation-matrix and position-vector parts.

EXAMPLE 2.4

Figure 2.11 shows a vector AP1. We wish to rotate it about ẐA by 30 degrees and
translate it 10 units in X̂A and 5 units in ŶA. Find AP2, where AP1 = [3.0 7.0 0.0]T .

The operator T , which performs the translation and rotation, is

T =

⎡
⎢⎢⎣

0.866 −0.500 0.000 10.0
0.500 0.866 0.000 5.0
0.000 0.000 1.000 0.0
0 0 0 1

⎤
⎥⎥⎦ . (2.34)

Given

AP1 =
⎡
⎣

3.0
7.0
0.0

⎤
⎦ , (2.35)
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AP1

RAP1
AP2

AQ

XA

YA

{A}

FIGURE 2.11: The vector AP1 rotated and translated to form AP2.

we use T as an operator:

AP2 = T AP1 =
⎡
⎣

9.098
12.562
0.000

⎤
⎦ . (2.36)

Note this example is numerically exactly the same as Example 2.2, but the interpre-
tation is quite different.

2.5 SUMMARY OF INTERPRETATIONS

We have introduced concepts first for the case of translation only, then for the case of
rotation only, and finally for the general case of rotation about a point and translation
of that point. Having understood the general case of rotation and translation, we will
not need to explicitly consider the two simpler cases, since they are contained within
the general framework.

As a general tool to represent frames, we have introduced the homogeneous
transform, a 4 × 4 matrix containing orientation and position information.

We have introduced three interpretations of this homogeneous transform:

1. It is a description of a frame. A
BT describes the frame {B} relative to the frame

{A}. Specifically, the columns of A
BR are unit vectors defining the directions of

the principal axes of {B}, and APBORG locates the position of the origin of {B}.
2. It is a transform mapping. A

BT maps BP → AP .
3. It is a transform operator. T operates on AP1 to create AP2.
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From this point on, the terms frame and transform will both be used to refer
to a position vector plus an orientation. Frame is the term favored in speaking of a
description, and transform is used most frequently when function as a mapping or
operator is implied. Note that transformations are generalizations of (and subsume)
translations and rotations; we will often use the term transform when speaking of a
pure rotation (or translation).

2.6 TRANSFORMATION ARITHMETIC

In this section, we look at the multiplication of transforms and the inversion of trans-
forms. These two elementary operations form a functionally complete set of trans-
form operators.

Compound Transformations

In Fig. 2.12, we have CP and wish to find AP .
Frame {C} is known relative to frame {B}, and frame {B} is known relative to

frame {A}. We can transform CP into BP as

BP = B
CT CP ; (2.37)

then, we can transform BP into AP as

AP = A
BT BP. (2.38)

Combining (2.37) and (2.38), we get the (not unexpected) result

AP = A
BT B

CT CP, (2.39)

from which we could define
A
CT = A

BT B
CT . (2.40)

AP

YA

ZA

XA

{A}

CP

YB

ZB
ZC

XB

XC

YC

{B}
{C}

FIGURE 2.12: Compound frames: each is known relative to the previous one.
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Again, note that familiarity with the sub- and superscript notation makes these
manipulations simple. In terms of the known descriptions of {B} and {C}, we can
give the expression for A

CT as

A
CT =

[
A
BR B

CR A
BR BPCORG + APBORG

0 0 0 1

]
. (2.41)

Inverting a Transform

Consider a frame {B} that is known with respect to a frame {A}—that is, we know
the value of A

BT . Sometimes we will wish to invert this transform, in order to get a
description of {A} relative to {B}—that is, B

AT . A straightforward way of calculating
the inverse is to compute the inverse of the 4 × 4 homogeneous transform. However,
if we do so, we are not taking full advantage of the structure inherent in the transform.
It is easy to find a computationally simpler method of computing the inverse, one that
does take advantage of this structure.

To find B
AT , we must compute B

AR and BPAORG from A
BR and APBORG. First,

recall from our discussion of rotation matrices that

B
AR = A

BRT . (2.42)

Next, we change the description of APBORG into {B} by using (2.13):

B(APBORG) = B
AR APBORG + BPAORG. (2.43)

The left-hand side of (2.43) must be zero, so we have

BPAORG = −B
AR APBORG = −A

BRT APBORG. (2.44)

Using (2.42) and (2.44), we can write the form of B
AT as

B
AT =

[
A
BRT −A

BRT APBORG

0 0 0 1

]
. (2.45)

Note that, with our notation,
B
AT = A

BT −1.

Equation (2.45) is a general and extremely useful way of computing the inverse of a
homogeneous transform.

EXAMPLE 2.5

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about ẐA by 30
degrees and translated four units in X̂A and three units in ŶA. Thus, we have a descrip-
tion of A

BT . Find B
AT .

The frame defining {B} is

A
BT =

⎡
⎢⎢⎣

0.866 −0.500 0.000 4.0
0.500 0.866 0.000 3.0
0.000 0.000 1.000 0.0
0 0 0 1

⎤
⎥⎥⎦ . (2.46)
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XA

XB

YA

YB

{A}

{B}

FIGURE 2.13: {B} relative to {A}.

Using (2.45), we compute

B
AT =

⎡
⎢⎢⎣

0.866 0.500 0.000 −4.964
−0.500 0.866 0.000 −0.598

0.000 0.000 1.000 0.0
0 0 0 1

⎤
⎥⎥⎦ . (2.47)

2.7 TRANSFORM EQUATIONS

Figure 2.14 indicates a situation in which a frame {D} can be expressed as products
of transformations in two different ways. First,

U
DT = U

AT A
DT ; (2.48)

second;
U
DT = U

BT B
CT C

DT . (2.49)

We can set these two descriptions of U
DT equal to construct a transform

equation:
U
AT A

DT = U
BT B

CT C
DT . (2.50)

Transform equations can be used to solve for transforms in the case of n unknown
transforms and n transform equations. Consider (2.50) in the case that all transforms
are known except B

CT . Here, we have one transform equation and one unknown
transform; hence, we easily find its solution to be

B
CT = U

BT −1 U
AT A

DT C
DT −1. (2.51)

Figure 2.15 indicates a similar situation.
Note that, in all figures, we have introduced a graphical representation of

frames as an arrow pointing from one origin to another origin. The arrow’s direction
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{U}

{A}

{D}

{C}

{B}

FIGURE 2.14: Set of transforms forming a loop.

indicates which way the frames are defined: In Fig. 2.14, frame {D} is defined relative
to {A}; in Fig. 2.15, frame {A} is defined relative to {D}. In order to compound
frames when the arrows line up, we simply compute the product of the transforms.
If an arrow points the opposite way in a chain of transforms, we simply compute its
inverse first. In Fig. 2.15, two possible descriptions of {C} are

U
CT = U

AT D
AT −1 D

CT (2.52)

and
U
CT = U

BT B
CT . (2.53)

Again, we might equate (2.52) and (2.53) to solve for, say, U
AT :

U
AT = U

BT B
CT D

CT −1 D
AT . (2.54)
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{U}

{A}

{D}

{C}

{B}

FIGURE 2.15: Example of a transform equation.

EXAMPLE 2.6

Assume that we know the transform B
TT in Fig. 2.16, which describes the frame at

the manipulator’s fingertips {T } relative to the base of the manipulator, {B}, that
we know where the tabletop is located in space relative to the manipulator’s base
(because we have a description of the frame {S} that is attached to the table as shown,
B
ST ), and that we know the location of the frame attached to the bolt lying on the
table relative to the table frame—that is, S

GT . Calculate the position and orientation
of the bolt relative to the manipulator’s hand, T

GT .
Guided by our notation (and, it is hoped, our understanding), we compute the

bolt frame relative to the hand frame as

T
GT = B

TT −1 B
ST

S
GT . (2.55)
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{T }

{G }

{S }
{B }

FIGURE 2.16: Manipulator reaching for a bolt.

2.8 MORE ON REPRESENTATION OF ORIENTATION

So far, our only means of representing an orientation is by giving a 3 × 3 rotation
matrix. As shown, rotation matrices are special in that all columns are mutually
orthogonal and have unit magnitude. Further, we will see that the determinant of
a rotation matrix is always equal to +1. Rotation matrices may also be called proper
orthonormal matrices, where “proper” refers to the fact that the determinant is +1
(nonproper orthonormal matrices have the determinant −1).

It is natural to ask whether it is possible to describe an orientation with fewer
than nine numbers. A result from linear algebra (known as Cayley’s formula for
orthonormal matrices [3]) states that, for any proper orthonormal matrix R, there
exists a skew-symmetric matrix S, such that

R = (I3 − S)−1(I3 + S), (2.56)

where I3 is a 3 × 3 unit matrix. Now, a skew-symmetric matrix (i.e., S = −ST ) of
dimension 3 is specified by three parameters (sx, sy, sz) as

S =
⎡
⎣

0 −sz sy
sz 0 −sx

−sy sx 0

⎤
⎦ . (2.57)

Therefore, an immediate consequence of formula (2.56) is that any 3 × 3 rotation
matrix can be specified by just three parameters.
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Clearly, the nine elements of a rotation matrix are not all independent. In fact,
given a rotation matrix, R, it is easy to write down the six dependencies between the
elements. Imagine R as three columns, as originally introduced:

R = [X̂ Ŷ Ẑ]. (2.58)

As we know from Section 2.2, these three vectors are the unit axes of some frame
written in terms of the reference frame. Each is a unit vector, and all three must be
mutually perpendicular, so we see that there are six constraints on the nine matrix
elements:

|X̂| = 1,

|Ŷ | = 1,

|Ẑ| = 1, (2.59)

X̂ · Ŷ = 0,

X̂ · Ẑ = 0,

Ŷ · Ẑ = 0.

It is natural then to ask whether representations of orientation can be devised such
that the representation is conveniently specified with three parameters. This section
will present several such representations.

Whereas translations along three mutually perpendicular axes are quite easy
to visualize, rotations seem less intuitive. Unfortunately, people have a hard time
describing and specifying orientations in three-dimensional space. One difficulty is
that rotations don’t generally commute. That is, A

BR B
CR is not the same as B

CR A
BR.

EXAMPLE 2.7

Consider two rotations, one about Ẑ by 30 degrees, and one about X̂ by 30 degrees:

Rz(30) =
⎡
⎣

0.866 −0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

⎤
⎦ (2.60)

Rx(30) =
⎡
⎣

1.000 0.000 0.000
0.000 0.866 −0.500
0.000 0.500 0.866

⎤
⎦ (2.61)

Rz(30)Rx(30) =
⎡
⎣

0.87 −0.43 0.25
0.50 0.75 −0.43
0.00 0.50 0.87

⎤
⎦

�= Rx(30)Rz(30) =
⎡
⎣

0.87 −0.50 0.00
0.43 0.75 −0.50
0.25 0.43 0.87

⎤
⎦ (2.62)

The fact that the order of rotations is important should not be surprising; further-
more, it is captured in the fact that we use matrices to represent rotations, because
multiplication of matrices is not commutative in general.
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Because rotations can be thought of either as operators or as descriptions of
orientation, it is not surprising that different representations are favored for each of
these uses. Rotation matrices are useful as operators. Their matrix form is such that,
when multiplied by a vector, they perform the rotation operation. However, rota-
tion matrices are somewhat unwieldy when used to specify an orientation. A human
operator at a computer terminal who wishes to type in the specification of the desired
orientation of a robot’s hand would have a hard time inputting a nine-element matrix
with orthonormal columns. A representation that requires only three numbers would
be simpler. The following sections introduce several such representations.

X–Y–Z Fixed Angles

One method of describing the orientation of a frame {B} is as follows:

Start with the frame coincident with a known reference frame {A}. Rotate
{B} first about X̂A by an angle γ , then about ŶA by an angle β, and, finally,
about ẐA by an angle α.

Each of the three rotations takes place about an axis in the fixed reference
frame {A}. We will call this convention for specifying an orientation X–Y–Z fixed
angles. The word “fixed” refers to the fact that the rotations are specified about the
fixed (i.e., nonmoving) reference frame (see Fig. 2.17). Sometimes, this convention
is referred to as roll, pitch, yaw angles, but care must be used, as this name is often
given to other related but different conventions.

The derivation of the equivalent rotation matrix, A
BRXYZ(γ, β, α), is straight-

forward, because all rotations occur about axes of the reference frame; that is,
A
BRXYZ(γ, β, α) = RZ(α)RY (β)RX(γ )

=
⎡
⎣

cα −sα 0
sα cα 0
0 0 1

⎤
⎦

⎡
⎣

cβ 0 sβ

0 1 0
−sβ 0 cβ

⎤
⎦

⎡
⎣

1 0 0
0 cγ −sγ

0 sγ cγ

⎤
⎦ , (2.63)

ZB
9

ZB
0

YB
0

ZB
-

XB
-

YB
-

XB
0

YB
9

XB
9

XA

YA YA YA

XA

ZA

XA

ZA

ZA

γ

β

α

FIGURE 2.17: X–Y–Z fixed angles. Rotations are performed in the order RX(γ ),
RY (β), RZ(α).
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where cα is shorthand for cos α, sα for sin α, and so on. It is extremely important
to understand the order of rotations used in (2.63). Thinking in terms of rotations as
operators, we have applied the rotations (from the right) of RX(γ ), then RY (β), and
then RZ(α). Multiplying (2.63) out, we obtain

A
BRXYZ(γ, β, α) =

⎡
⎣

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

⎤
⎦ . (2.64)

Keep in mind that the definition given here specifies the order of the three rotations.
Equation (2.64) is correct only for rotations performed in the order: about X̂A by γ ,
about ŶA by β, about ẐA by α.

The inverse problem, that of extracting equivalent X–Y–Z fixed angles from a
rotation matrix, is often of interest. The solution depends on solving a set of transcen-
dental equations: there are nine equations and three unknowns if (2.64) is equated to
a given rotation matrix. Among the nine equations are six dependencies, so, essen-
tially, we have three equations and three unknowns. Let

A
BRXYZ(γ, β, α) =

⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ . (2.65)

From (2.64), we see that, by taking the square root of the sum of the squares
of r11 and r21, we can compute cos β. Then, we can solve for β with the arc tangent
of −r31 over the computed cosine. Then, as long as cβ �= 0, we can solve for α by
taking the arc tangent of r21/cβ over r11/cβ, and we can solve for γ by taking the arc
tangent of r32/cβ over r33/cβ.

In summary,

β = Atan2(−r31,

√
r2

11 + r2
21),

α = Atan2(r21/cβ, r11/cβ), (2.66)

γ = Atan2(r32/cβ, r33/cβ),

where Atan2(y, x) is a two-argument arc tangent function.3

Although a second solution exists, by using the positive square root in the for-
mula for β, we always compute the single solution for which −90.0◦ ≤ β ≤ 90.0◦. This
is usually a good practice, because we can then define one-to-one mapping functions
between various representations of orientation. However, in some cases, calculating
all solutions is important (more on this will be presented in Chapter 4 ). If β = ±90.0◦
(so that cβ = 0), the solution of (2.67) degenerates. In those cases, only the sum or
the difference of α and γ can be computed. One possible convention is to choose
α = 0.0 in these cases, which has the results given next.

3Atan2(y, x) computes tan−1(
y
x ) but uses the signs of both x and y to identify the quadrant in which

the resulting angle lies. For example, Atan 2(−2.0, −2.0) = −135◦, whereas Atan 2(2.0, 2.0) = 45◦, a dis-
tinction which would be lost with a single-argument arc tangent function. We are frequently computing
angles that can range over a full 360◦, so we will make use of the Atan2 function regularly. Note that Atan2
becomes undefined when both arguments are zero. It is sometimes called a “4-quadrant arc tangent,” and
some programming-language libraries have it predefined.
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If β = 90.0◦, then a solution can be calculated to be

β = 90.0◦,

α = 0.0, (2.67)

γ = Atan2(r12, r22).

If β = −90.0◦, then a solution can be calculated to be

β = −90.0◦,

α = 0.0, (2.68)

γ = −Atan2(r12, r22).

Z–Y–X Euler Angles

Another possible description of a frame {B} is as follows:

Start with the frame coincident with a known frame {A}. Rotate {B} first
about ẐB by an angle α, then about ŶB by an angle β, and, finally, about
X̂B by an angle γ .

In this representation, each rotation is performed about an axis of the moving
system {B} rather than one of the fixed reference {A}. Such sets of three rotations are
called Euler angles. Note that each rotation takes place about an axis whose location
depends upon the preceding rotations. Because the three rotations occur about the
axes Ẑ, Ŷ , and X̂, we will call this representation Z–Y–X Euler angles.

Figure 2.18 shows the axes of {B} after each Euler angle rotation is applied.
Rotation α about Ẑ causes X̂ to rotate into X̂′, Ŷ to rotate into Ŷ ′, and so on. An
additional “prime” gets added to each axis with each rotation. A rotation matrix
which is parameterized by Z–Y–X Euler angles will be indicated by the notation

ZB
9

XB
9

XB
0 XB

0

YB
0

ZB
0

ZB
- YB

-

XB
-

YB
9

ZB
0

YB
0

XB
9

ZA

YA

XA

α

β

γ

ZB
9

YB
9

FIGURE 2.18: Z–Y–X Euler angles.
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A
BRZ′Y ′X′(α, β, γ ). Note that we have added “primes” to the subscripts to indicate
that this rotation is described by Euler angles.

With reference to Fig. 2.18, we can use the intermediate frames {B ′} and {B ′′} in
order to give an expression for A

BRZ′Y ′X′(α, β, γ ). Thinking of the rotations as descrip-
tions of these frames, we can immediately write

A
BR = A

B ′R
B ′
B ′′R

B ′′
BR, (2.69)

where each of the relative descriptions on the right-hand side of (2.69) is given by
the statement of the Z–Y–X Euler angle convention. Namely, the final orientation
of {B} is given relative to {A} as

A
BRZ′Y ′X′ = RZ(α)RY (β)RX(γ )

=
⎡
⎣

cα −sα 0
sα cα 0
0 0 1

⎤
⎦

⎡
⎣

cβ 0 sβ

0 1 0
−sβ 0 cβ

⎤
⎦

⎡
⎣

1 0 0
0 cγ −sγ

0 sγ cγ

⎤
⎦ , (2.70)

where cα = cos α, sα = sin α, and so on. Multiplying out, we obtain

A
BRZ′Y ′X′(α, β, γ ) =

⎡
⎣

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

⎤
⎦ . (2.71)

Note that the result is exactly the same as that obtained for the same three rotations
taken in the opposite order about fixed axes! This somewhat nonintuitive result holds
in general: three rotations taken about fixed axes yield the same final orientation as
the same three rotations taken in opposite order about the axes of the moving frame.

Because (2.71) is equivalent to (2.64), there is no need to repeat the solution
for extracting Z–Y–X Euler angles from a rotation matrix. That is, (2.66) can also
be used to solve for Z–Y–X Euler angles that correspond to a given rotation matrix.

Z–Y–Z Euler Angles

Another possible description of a frame {B} is

Start with the frame coincident with a known frame {A}. Rotate {B} first
about ẐB by an angle α, then about ŶB by an angle β, and, finally, about
ẐB by an angle γ .

Rotations are described relative to the frame we are moving, namely, {B}, so
this is an Euler angle description. Because the three rotations occur about the axes
Ẑ, Ŷ , and Ẑ, we will call this representation Z–Y–Z Euler angles.

Following the development exactly as in the last section, we arrive at the equiv-
alent rotation matrix

A
BRZ′Y ′Z′(α, β, γ ) =

⎡
⎣

cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

⎤
⎦ . (2.72)

The solution for extracting Z–Y–Z Euler angles from a rotation matrix is
stated next.
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Given

A
BRZ′Y ′Z′(α, β, γ ) =

⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ , (2.73)

then, if sin β �= 0, it follows that

β = Atan2(

√
r2

31 + r2
32, r33),

α = Atan2(r23/sβ, r13/sβ), (2.74)

γ = Atan2(r32/sβ,−r31/sβ).

Although a second solution exists (which we find by using the positive square root in
the formula for β), we always compute the single solution for which 0.0 ≤ β ≤ 180.0◦.
If β = 0.0 or 180.0◦, the solution of (2.74) degenerates. In those cases, only the sum
or the difference of α and γ may be computed. One possible convention is to choose
α = 0.0 in these cases, which has the results given next.

If β = 0.0, then a solution can be calculated to be

β = 0.0,

α = 0.0, (2.75)

γ = Atan2(−r12, r11).

If β = 180.0◦, then a solution can be calculated to be

β = 180.0◦,

α = 0.0, (2.76)

γ = Atan2(r12,−r11).

Other Angle-Set Conventions

In the preceding subsections, we have seen three conventions for specifying orien-
tation: X–Y–Z fixed angles, Z–Y–X Euler angles, and Z–Y–Z Euler angles. Each
of these conventions requires performing three rotations about principal axes in a
certain order. These conventions are examples of a set of 24 conventions that we will
call angle-set conventions. Of these, 12 conventions are for fixed-angle sets, and 12
are for Euler angle sets. Note that, because of the duality of fixed-angle sets with
Euler angle sets, there are really only 12 unique parameterizations of a rotation
matrix by using successive rotations about principal axes. There is often no particu-
lar reason to favor one convention over another, but various authors adopt different
ones, so it is useful to list the equivalent rotation matrices for all 24 conventions.
Appendix B (in the back of the book) gives the equivalent rotation matrices for all
24 conventions.

Equivalent Angle–Axis Representation

With the notation RX(30.0), we give the description of an orientation by giving an
axis, X̂, and an angle, 30.0 degrees. This is an example of an equivalent angle–axis rep-
resentation. If the axis is a general direction (rather than one of the unit directions)
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any orientation may be obtained through proper axis and angle selection. Consider
the following description of a frame {B}:

Start with the frame coincident with a known frame {A}; then rotate {B}
about the vector AK̂ by an angle θ according to the right-hand rule.

Vector K̂ is sometimes called the equivalent axis of a finite rotation. A general
orientation of {B} relative to {A} may be written as A

BR(K̂, θ) or RK(θ), and will be
called the equivalent angle–axis representation.4 The specification of the vector AK̂

requires only two parameters, because its length is always taken to be one. The angle
specifies a third parameter. Often, we will multiply the unit direction, K̂ , with the
amount of rotation, θ , to form a compact 3 × 1 vector description of orientation,
denoted by K (no “hat”) (see Fig. 2.19).

When the axis of rotation is chosen from among the principal axes of {A}, then
the equivalent rotation matrix takes on the familiar form of planar rotations:

RX(θ) =
⎡
⎣

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦ , (2.77)

RY (θ) =
⎡
⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ , (2.78)

RZ(θ) =
⎡
⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦ . (2.79)

ZB

ZA

XA XB

YA

YB

AK

{A}

{B }

θ

FIGURE 2.19: Equivalent angle–axis representation.

4That such a K̂ and θ exist for any orientation of {B} relative to {A} was shown originally by Euler,
and is known as Euler’s theorem on rotation [3].
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If the axis of rotation is a general axis, it can be shown (as in Exercise 2.6) that the
equivalent rotation matrix is

RK(θ) =
⎡
⎣

kxkxvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ kykyvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ kzkzvθ + cθ

⎤
⎦ , (2.80)

where cθ = cos θ , sθ = sin θ , vθ = 1 − cos θ , and AK̂ = [kxkykz]T . The sign of θ is
determined by the right-hand rule, with the thumb pointing along the positive sense
of AK̂ .

Equation (2.80) converts from angle–axis representation to rotation-matrix
representation. Note that, given any axis of rotation and any angular amount, we
can easily construct an equivalent rotation matrix.

The inverse problem, namely, that of computing K̂ and θ from a given rotation
matrix, is mostly left for the exercises (Exercises 2.6 and 2.7), but a partial result is
given here [3]. If

A
BRK(θ) =

⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ , (2.81)

then

θ = Acos
(

r11 + r22 + r33 − 1
2

)

and

K̂ = 1
2 sin θ

⎡
⎣

r32 − r23
r13 − r31
r21 − r12

⎤
⎦ . (2.82)

This solution always computes a value of θ between 0 and 180 degrees. For any
axis–angle pair (AK̂, θ), there is another pair, namely, (−AK̂,−θ), which results in
the same orientation in space, with the same rotation matrix describing it. Therefore,
in converting from a rotation-matrix into an angle–axis representation, we are faced
with choosing between solutions. A more serious problem is that, for small angular
rotations, the axis becomes ill-defined. Clearly, if the amount of rotation goes to zero,
the axis of rotation becomes completely undefined. The solution given by (2.82) fails
if θ = 0◦ or θ = 180◦.

EXAMPLE 2.8

A frame {B} is described as initially coincident with {A}. We then rotate {B} about
the vector AK̂ = [0.707 0.707 0.0]T (passing through the origin) by an amount
θ = 30 degrees. Give the frame description of {B}.

Substituting into (2.80) yields the rotation-matrix part of the frame description.
There was no translation of the origin, so the position vector is [0, 0, 0]T . Hence,

A
BT =

⎡
⎢⎢⎣

0.933 0.067 0.354 0.0
0.067 0.933 −0.354 0.0

−0.354 0.354 0.866 0.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ . (2.83)
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Up to this point, all rotations we have discussed have been about axes that
pass through the origin of the reference system. If we encounter a problem for which
this is not true, we can reduce the problem to the “axis through the origin” case by
defining additional frames whose origins lie on the axis, then solving a transform
equation.

EXAMPLE 2.9

A frame {B} is described as initially coincident with {A}. We then rotate {B} about
the vector AK̂ = [0.707 0.707 0.0]T (passing through the point AP = [1.0 2.0 3.0]) by
an amount θ = 30 degrees. Give the frame description of {B}.

Before the rotation, {A} and {B} are coincident. As is shown in Fig. 2.20, we
define two new frames, {A′} and {B ′}, which are coincident with each other and have
the same orientation as {A} and {B} respectively, but are translated relative to {A} by
an offset that places their origins on the axis of rotation. We will choose

A
A′T =

⎡
⎢⎢⎣

1.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
0.0 0.0 1.0 3.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ . (2.84)

Similarly, the description of {B} in terms of {B ′} is

B ′
BT =

⎡
⎢⎢⎣

1.0 0.0 0.0 −1.0
0.0 1.0 0.0 −2.0
0.0 0.0 1.0 −3.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ . (2.85)

{A}
{B }

AP

{B9} {A9}
K

FIGURE 2.20: Rotation about an axis that does not pass through the origin of {A}.
Initially, {B} was coincident with {A}.
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Now, keeping other relationships fixed, we can rotate {B ′} relative to {A′}. This is a
rotation about an axis that passes through the origin, so we can use (2.80) to compute
{B ′} relative to {A′}. Substituting into (2.80) yields the rotation-matrix part of the
frame description. There was no translation of the origin, so the position vector is
[0, 0, 0]T . Thus, we have

A′
B ′T =

⎡
⎢⎢⎣

0.933 0.067 0.354 0.0
0.067 0.933 −0.354 0.0

−0.354 0.354 0.866 0.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ . (2.86)

Finally, we can write a transform equation to compute the desired frame,

A
BT = A

A′T
A′
B ′T

B ′
BT , (2.87)

which evaluates to

A
BT =

⎡
⎢⎢⎣

0.933 0.067 0.354 −1.13
0.067 0.933 −0.354 1.13

−0.354 0.354 0.866 0.05
0.000 0.000 0.000 1.00

⎤
⎥⎥⎦ . (2.88)

A rotation about an axis that does not pass through the origin causes a change in
position, plus the same final orientation as if the axis had passed through the origin.
Note that we could have used any definition of {A′} and {B ′} such that their origins
were on the axis of rotation. Our particular choice of orientation was arbitrary, and
our choice of the position of the origin was one of an infinity of possible choices lying
along the axis of rotation (see also Exercise 2.14).

Euler Parameters

Another representation of orientation is by means of four numbers called the Euler
parameters. Although complete discussion is beyond the scope of the book, we state
the convention here for reference.

In terms of the equivalent axis K̂ = [kx ky kz]T and the equivalent angle θ , the
Euler parameters are given by

ε1 = kx sin
θ

2
,

ε2 = ky sin
θ

2
, (2.89)

ε3 = kz sin
θ

2
, and

ε4 = cos
θ

2
.

It is then clear that these four quantities are not independent:

ε2
1 + ε2

2 + ε2
3 + ε2

4 = 1 (2.90)
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must always hold. Hence, an orientation might be visualized as a point on a unit
hypersphere in four-dimensional space.

Sometimes, the Euler parameters are viewed as a 3 × 1 vector plus a scalar.
However, as a 4 × 1 vector, the Euler parameters are known as a unit quaternion.

The rotation matrix Rε that is equivalent to a set of Euler parameters is

Rε =
⎡
⎣

1 − 2ε2
2 − 2ε2

3 2(ε1ε2 − ε3ε4) 2(ε1ε3 + ε2ε4)

2(ε1ε2 + ε3ε4) 1 − 2ε2
1 − 2ε2

3 2(ε2ε3 − ε1ε4)

2(ε1ε3 − ε2ε4) 2(ε2ε3 + ε1ε4) 1 − 2ε2
1 − 2ε2

2

⎤
⎦ . (2.91)

Given a rotation matrix, the equivalent Euler parameters are

ε1 = r32 − r23

4ε4
,

ε2 = r13 − r31

4ε4
, (2.92)

ε3 = r21 − r12

4ε4
, and

ε4 = 1
2

√
1 + r11 + r22 + r33.

Note that (2.92) is not useful in a computational sense if the rotation matrix repre-
sents a rotation of 180 degrees about some axis, because ε4 goes to zero. However,
it can be shown that, in the limit, all the expressions in (2.92) remain finite, even for
this case. In fact, from the definitions in (2.88), it is clear that all εi remain in the
interval [−1, 1].

Taught and Predefined Orientations

In many robot systems, it will be possible to “teach” positions and orientations by
using the robot itself. The manipulator is moved to a desired location, and this posi-
tion is recorded. A frame taught in this manner need not necessarily be one to which
the robot will be commanded to return; it could be a part location, or a fixture loca-
tion. In other words, the robot is used as a measuring tool having six degrees of free-
dom. Teaching an orientation like this completely obviates the need for the human
programmer to deal with orientation representation. In the computer, the taught
point is stored as a rotation matrix (or however), but the user never has to see or
understand it. Robot systems that allow teaching of frames by using the robot are
thus highly recommended.

Besides teaching frames, some systems have a set of predefined orientations,
such as “pointing down” or “pointing left.” These specifications are very easy for
humans to deal with. However, if this were the only means of describing and speci-
fying orientation, the system would be very limited.

2.9 TRANSFORMATION OF FREE VECTORS

We have been concerned mostly with position vectors in this chapter. In later
chapters, we will discuss velocity and force vectors as well. These vectors will
transform differently because they are different types of vectors.
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V1

V2
V3

Z

Y

X

FIGURE 2.21: Equal velocity vectors.

In mechanics, one makes a distinction between the equality and the equiva-
lence of vectors. Two vectors are equal if they have the same dimensions, magnitude,
and direction. Two vectors that are considered equal could have different lines of
action—for example, the three equal vectors in Fig 2.21. These velocity vectors have
the same dimensions, magnitude, and direction, and so are equal according to our
definition.

Two vectors are equivalent in a certain capacity if each produces the very same
effect in this capacity. Thus, if the criterion in Fig. 2.21 is distance traveled, all three
vectors give the same result and are thus equivalent in this capacity. If the criterion is
height above the xy plane, then the vectors are not equivalent despite their equality.
Thus, relationships between vectors and notions of equivalence depend entirely on
the situation at hand. Furthermore, vectors that are not equal might cause equivalent
effects in certain cases.

We will define two basic classes of vector quantities that might be helpful.
The term line vector refers to a vector that is dependent on its line of action,

along with direction and magnitude, for causing its effects. Often, the effects of a
force vector depend upon its line of action (or point of application), so it would then
be considered a line vector.

A free vector refers to a vector that may be positioned anywhere in space with-
out loss or change of meaning, provided that magnitude and direction are preserved.

For example, a pure moment vector is always a free vector. If we have a moment
vector BN that is known in terms of {B}, then we calculate the same moment in terms
of frame {A} as

AN = A
BR BN. (2.93)

In other words, all that counts is the magnitude and direction (in the case of a free
vector), so only the rotation matrix relating the two systems is used in transforming.
The relative locations of the origins do not enter into the calculation.
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YB

XB

XA

YA

ZB

ZA

{B }

{A}

V

FIGURE 2.22: Transforming velocities.

Likewise, a velocity vector written in {B}, BV , is written in {A} as

AV = A
BR BV. (2.94)

The velocity of a point is a free vector, so all that is important is its direction and
magnitude. The operation of rotation [as in (2.94)] does not affect the magnitude,
yet accomplishes the rotation that changes the description of the vector from {B}
to {A}. Note that APBORG, which would appear in a position-vector transformation,
does not appear in a velocity transform. For example, in Fig. 2.22, if BV = 5X̂, then
AV = 5Ŷ .

Velocity vectors and force and moment vectors will be introduced more fully
in Chapter 5.

2.10 COMPUTATIONAL CONSIDERATIONS

The availability of inexpensive computing power is largely responsible for the growth
of the robotics industry; yet, for some time to come, efficient computation will remain
an important issue in the design of a manipulation system.

The homogeneous representation is useful as a conceptual entity, but trans-
formation software typically used in industrial manipulation systems does not make
use of it directly, because the time spent multiplying by zeros and ones is wasteful.
Usually, the computations shown in (2.41) and (2.45) are performed, rather than the
direct multiplication or inversion of 4 × 4 matrices.

The order in which transformations are applied can make a large difference in
the amount of computation required to compute the same quantity. Consider per-
forming multiple rotations of a vector, as in

AP = A
BR B

CR C
DR DP. (2.95)

One choice is to first multiply the three rotation matrices together, to form A
DR in the

expression
AP = A

DR DP. (2.96)



“runall”
2021/5/17
page 64

�

�

�

�

�

�

�

�

64 Chapter 2 Spatial Descriptions and Transformations

Forming A
DR from its three constituents requires 54 multiplications and 36 additions.

Performing the final matrix-vector multiplication of (2.96) requires an additional
9 multiplications and 6 additions, bringing the totals to 63 multiplications and 42
additions.

If, instead, we transform the vector through the matrices one at a time, that is,
AP = A

BR B
CR C

DR DP

AP = A
BR B

CR CP (2.97)

AP = A
BR BP

AP = AP,

then the total computation requires only 27 multiplications and 18 additions, fewer
than half the computations required by the other method.

Of course, in some cases, the relationships A
BR, B

CR, and C
DR are constant, while

there are many DPi that need to be transformed into APi . In such a case, it is more
efficient to calculate A

DR once, and then use it for all future mappings (see also
Exercise 2.16).

EXAMPLE 2.10

Give a method of computing the product of two rotation matrices, A
BR B

CR, that uses
fewer than 27 multiplications and 18 additions.

Where L̂i are the columns of B
CR and Ĉi are the three columns of the result,

compute

Ĉ1 = A
BRL̂i,

Ĉ2 = A
BRL̂2, (2.98)

Ĉ3 = Ĉ1 × Ĉ2,

which requires 24 multiplications and 15 additions.
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EXERCISES
2.1 [15] A vector AP is rotated about ŶA by θ degrees and is subsequently rotated

about ẐA by φ degrees. Give the rotation matrix that accomplishes these rotations
in the given order.
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2.2 [15] A vector AP is rotated about ŶA by 45 degrees and is subsequently rotated
about X̂A by 60 degrees. Give the rotation matrix that accomplishes these rotations
in the given order.

2.3 [16] A frame {B} is located initially coincident with a frame {A}. We rotate {B}
about X̂B by θ degrees, and then we rotate the resulting frame about ŶB by φ

degrees. Give the rotation matrix that will change the descriptions of vectors from
BP to AP .

2.4 [16] A frame {B} is located initially coincident with a frame {A}. We rotate
{B} about X̂B by 45 degrees, and then we rotate the resulting frame about
ŶB by 30 degrees. Give the rotation matrix that will change the description of
vectors from BP to AP .

2.5 [13] A
BR is a 3 × 3 identity matrix. What is the physical meaning of this rotation?

2.6 [21] Derive equation (2.80).
2.7 [24] Describe (or program) an algorithm that extracts the new coordinate values

of a point P when the frame is rotated about a vector K . Use Equation (2.80) to
calculate the rotation matrix.

2.8 [29] Write a subroutine that changes representation of orientation from rotation-
matrix form to equivalent angle–axis form. A Pascal-style procedure declaration
would begin

Procedure RMTOAA (VAR R:mat33; VAR K:vec3; VAR theta: real);

Write another subroutine that changes from equivalent angle–axis representation
to rotation-matrix representation:

Procedure AATORM(VAR K:vec3; VAR theta: real: VAR R:mat33);

Write the routines in C if you prefer. Run these procedures on several cases of test
data back-to-back and verify that you get back what you put in. Include some of
the difficult cases!

2.9 [27] Do Exercise 2.8 for Y–X–Z fixed angles.
2.10 [27] Do Exercise 2.8 for Z–Y–Z Euler angles.
2.11 [10] Does a rotation matrix always follow commutative law for two successive

rotations?
2.12 [14] A velocity vector is given by

BV =
⎡
⎣

40.0
20.0
60.0

⎤
⎦

Given

A
BT =

⎡
⎢⎣

1 0 0 8
0 0.5 −0.866 −7
0 0.866 0.5 4
0 0 0 1

⎤
⎥⎦

Compute AV .
2.13 [21] The following frame definitions are given as known:

U
AT =

⎡
⎢⎣

0.5 −0.866 0 12
0.866 0.5 0 16
0 0 1 10
0 0 0 1

⎤
⎥⎦ ,
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B
AT =

⎡
⎢⎣

1 0 0 9
0 0.5 −0.866 −5
0 0.866 0.5 14
0 0 0 1

⎤
⎥⎦ ,

C
UT =

⎡
⎢⎣

0.866 −0.25 0.433 18
0.5 0.433 −0.75 −9
0 0.866 0.5 3
0 0 0 1

⎤
⎥⎦ .

Draw a frame diagram (like that of Fig. 2.15) to show their arrangement qualita-
tively, and solve for B

CT .
2.14 [31] Develop a general formula to obtain A

BT , where, starting from initial coin-
cidence, {B} is rotated by θ about K̂ where K̂ passes through the point AP (not
through the origin of {A} in general).

2.15 [34] If the rotation about a vector K is equivalent to the z-axis rotation, show that
kx = ky = 0, and kz = 1.

2.16 [22] A vector must be mapped through three rotation matrices:

AP = A
BR B

CR C
DR DP.

One choice is to first multiply the three rotation matrices together, to form A
DR in

the expression
AP = A

DR DP.

Another choice is to transform the vector through the matrices one at a time—
that is,

AP = A
BR B

CR C
DR DP,

AP = A
BR B

CR CP,

AP = A
BR BP,

AP = AP.

If DP is changing at 100 Hz, we would have to recalculate AP at the same rate.
However, the three rotation matrices are also changing, as reported by a vision
system that gives us new values for A

BR, B
CR, and C

DR at 30 Hz. What is the best way
to organize the computation to minimize the calculation effort (multiplications
and additions)?

2.17 [16] Another familiar set of three coordinates that can be used to describe a point
in space is cylindrical coordinates. The three coordinates are defined as illustrated
in Fig. 2.23. The coordinate θ gives a direction in the xy plane along which to trans-
late radially by an amount r . Finally, z is given to specify the height above the xy

plane. Compute the Cartesian coordinates of the point AP in terms of the cylin-
drical coordinates θ , r , and z.

2.18 [18] Another set of three coordinates that can be used to describe a point in
space is spherical coordinates. The three coordinates are defined as illustrated
in Fig. 2.24. The angles α and β can be thought of as describing azimuth and
elevation of a ray projecting into space. The third coordinate, r , is the radial
distance along that ray to the point being described. Calculate the Cartesian
coordinates of the point AP in terms of the spherical coordinates α, β, and r .
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{A}
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θ
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FIGURE 2.23: Cylindrical coordinates.
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{A}

AP

r

α

β

FIGURE 2.24: Spherical coordinates.

2.19 [24] An object is rotated about its X̂ axis by an amount φ, then it is rotated about
its new Ŷ axis by an amount ψ . From our study of Euler angles, we know that the
resulting orientation is given by

Rx(φ)Ry(ψ),

whereas, if the two rotations had occurred about axes of the fixed reference frame,
the result would have been

Ry(ψ)Rx(φ).
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It appears that the order of multiplication depends upon whether the rotations
are described relative to fixed axes or those of the frame being moved. It is more
appropriate, however, to realize that, in the case of specifying a rotation about an
axis of the frame being moved, we are specifying a rotation in the fixed system
given by (for this example)

Rx(φ)Ry(ψ)R−1
x (φ).

This similarity transform [1], multiplying the original Rx(φ) on the left, reduces to
the resulting expression in which it looks as if the order of matrix multiplication
has been reversed. Taking this viewpoint, give a derivation for the form of the
rotation matrix that is equivalent to the Z–Y–Z Euler angle set (α, β, γ ). (The
result is given by (2.72).)

2.20 [20] Imagine rotating a vector Q about a vector K̂ by an amount θ to form a new
vector, Q′—that is,

Q′ = RK(θ)Q.

Use (2.80) to derive Rodriques’s formula,

Q′ = Q cos θ + sin θ(K̂ × Q) + (1 − cos θ)(K̂ · Q)K̂.

2.21 [15] For rotations sufficiently small that the approximations sin θ = θ , cos θ = 1,
and θ2 = 0 hold, derive the rotation-matrix equivalent to a rotation of θ about a
general axis, K̂ . Start with (2.80) for your derivation.

2.22 [20] Using the result from Exercise 2.21, find the equivalent rotation matrix when
the axis of rotation is chosen from the principal axes of {A} and consider rotations
that are sufficiently small.

2.23 [25] Develop and combine transformation matrices if successive rotations are per-
formed along two identical straight lines arranged in an L shape. Initially, the
frames are located at a single point, and at the final stage, they are located at the
farthest ends of the L-shape. The x-axis should always align with the axis of the
L shape.

2.24 [45] Assume a numerical matrix R and compute the corresponding skew-
symmetric matrix using Cayley’s formula.

2.25 [30] A vector AP is rotated about ẐA by 60 degrees. Provide the rotation matrix
and find out the eigenvalues of the obtained rotation matrix.

2.26 [33] Find the final rotation matrix of Y–Z–X Euler angles.
2.27 [15] Referring to Fig. 2.25, give the value of A

BT .

2.28 [15] Referring to Fig. 2.25, give the value of A
CT .

2.29 [15] Referring to Fig. 2.25, give the value of B
CT .

2.30 [15] Referring to Fig. 2.25, give the value of C
AT .

2.31 [15] Referring to Fig. 2.26, give the value of A
BT .

2.32 [15] Referring to Fig. 2.26, give the value of A
CT .

2.33 [15] Referring to Fig. 2.26, give the value of B
CT .

2.34 [15] Referring to Fig. 2.26, give the value of C
AT .

2.35 [20] An arbitrary 3 × 3 matrix is claimed to be a rotational transformation matrix.
How can this claim be examined? Provide the necessary criteria for the same.

2.36 [36] A rigid body moving in 3D space has 6 DOF. What will be the total DOF if
the same rigid body is considered in 2D space? Also, in such a situation, how many
linear and rotary motions will be obtained?
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FIGURE 2.25: Frames at the corners of a wedge.
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FIGURE 2.26: Frames at the corners of a wedge.

2.37 [15] Given

A
BT =

⎡
⎢⎣

0.87 −0.43 0.25 7.0
0.5 0.75 −0.43 −2.0
0 0.5 0.87 8.0
0 0 0 1

⎤
⎥⎦

what is the (1,4) element of B
AT ?
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2.38 [25] The frame {B} is rotated w.r.t. frame {A} about X̂A by 30 degrees. The transla-
tion of frame {B} from {A} is [5 10 0]T. Formulate the homogenous transformation
matrix and find its inverse.

2.39 [37] The frames {A} and {B} are originally coincident. Frame {B} is then rotated
by 60 degrees about a vector k = [1 2 3]T and passes through an origin. Find the
homogenous transformation matrix of {B}. Use (2.80) as a starting point.

2.40 [33] Give an algorithm (perhaps in the form of a C program) that computes the
X–Z–Y Euler angles corresponding to a given rotation matrix (see Appendix B).

2.41 [33] Give an algorithm (perhaps in the form of a C program) that computes the
Y–Z–Y fixed angles corresponding to a given rotation matrix (see Appendix B).

2.42 [25] Solve Exercise 2.38 to find the description of point BP = [10 15 20]T in
frame {A}.

2.43 [15] Calculate the rotation matrix, A
BR, if frames {A} and {B} are originally coin-

cident, then frame {B} is rotated about X̂A by 30 degrees, then about ŶA by 60
degrees, and, finally, about ẐA by 30 degrees.

2.44 [15] The frames {A} and {B} are originally coincident, then frame {B} is rotated
about X̂A by γ degrees, then about ŶA by β degrees, and finally about ẐA by α

degrees. The rotation matrix A
BR is given by

A
BR =

⎡
⎣

0.33 −0.770 0.547
0.908 0.418 0.0396

−0.259 0.483 0.837

⎤
⎦

Determine the corresponding set of X–Y–Z fixed angles.
2.45 [15] The frames {A} and {B} are originally coincident, then frame {B} is rotated

about ẐB by α degrees, then about ŶB by β degrees, and finally about ẐB by γ

degrees. The rotation matrix A
BR is given by

A
BR =

⎡
⎣

−0.127 −0.78 0.612
0.927 0.127 0.354

−0.354 0.612 0.707

⎤
⎦

Determine the corresponding set of Z–Y–Z Euler angles.
2.46 [20] There is a rotating disk with radius 10 cm on the periphery of which a point

is defined. If the disk is rotating w.r.t. the z-axis with 6 rpm, define the rotation
matrix of the point after 2.5 seconds.

2.47 [15] A vector AP is rotated about ẐA by α degrees, then rotated about ŶA by β

degrees, and subsequently rotated about X̂A by γ degrees. Give the rotation matrix
that accomplishes these rotations in the given order.

2.48 [15] A vector AP is rotated about ŶA by 30 degrees, then rotated about X̂A by
45 degrees, and subsequently rotated about ẐA by 60 degrees. Give the rotation
matrix that accomplishes these rotations in the given order.

2.49 [14] The homogenous transformation matrix between frames {A} and {B} is

A
BT =

⎡
⎢⎣

0.866 −0.5 0 15
0.5 0.866 0 −8
0 0 1 10
0 0 0 1

⎤
⎥⎦
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Similarly, for frames {B} and {C}, it is

B
CT =

⎡
⎢⎣

1 0 0 2
0 0.707 −0.707 9
0 0.707 0.707 −6
0 0 0 1

⎤
⎥⎦

Compute A
CT .

2.50 [15] Referring to Fig. 2.26, give the value of C
BT .

2.51 [15] Given

A
BT =

⎡
⎢⎣

0.87 −0.43 0.25 7.0
0.5 0.75 −0.43 −2.0
0 0.5 0.87 8.0
0 0 0 1

⎤
⎥⎦

what is BPAORG?

PROGRAMMING EXERCISE (PART 2)

1. If your function library does not include an Atan2 function subroutine, write one.
2. To make a friendly user interface, we wish to describe orientations in the planar

world by a single angle, θ , instead of by a 2 × 2 rotation matrix. The user will always
communicate in terms of angle θ , but internally we will need the rotation-matrix
form. For the position-vector part of a frame, the user will specify an x and a y

value. So, we want to allow the user to specify a frame as a 3-tuple: (x, y, θ). Inter-
nally, we wish to use a 2 × 1 position vector and a 2 × 2 rotation matrix, so we need
conversion routines. Write a subroutine whose Pascal definition would begin

Procedure UTOI (VAR uform: vec3; VAR iform: frame);

where “UTOI” stands for “User form TO Internal form.” The first argument is the
3-tuple (x, y, θ), and the second argument is of type “frame,” consists of a (2 × 1)
position vector and a (2 × 2) rotation matrix. If you wish, you may represent the
frame with a (3 × 3) homogeneous transform in which the third row is [0 0 1]. The
inverse routine will also be necessary:

Procedure ITOU (VAR iform: frame; VAR uform: vec3);

3. Write a subroutine to multiply two transforms together. Use the following proce-
dure heading:

Procedure TMULT (VAR brela, crelb, crela: frame);

The first two arguments are inputs, and the third is an output. Note that the names
of the arguments document what the program does (brela = A

BT ).
4. Write a subroutine to invert a transform. Use the following procedure heading:

Procedure TINVERT (VAR brela, arelb: frame);

The first argument is the input, the second the output. Note that the names of the
arguments document what the program does (brela = A

BT ).
5. The following frame definitions are given as known:

U
AT = [x y θ ] = [11.0 − 1.0 30.0],
B
AT = [x y θ ] = [0.0 7.0 45.0], and

C
UT = [x y θ ] = [−3.0 − 3.0 − 30.0].
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These frames are input in the user representation [x, y, θ ] (where θ is in degrees).
Draw a frame diagram (like Fig. 2.15, only in 2-D) that qualitatively shows their
arrangement. Write a program that calls TMULT and TINVERT (defined in pro-
gramming exercises 3 and 4) as many times as needed to solve for B

CT . Then print
out B

CT in both internal and user representation.

MATLAB EXERCISE 2A

a) Using the Z–Y –X (α − β − γ ) Euler angle convention, write a MATLAB program
to calculate the rotation matrix A

BR when the user enters the Euler angles α–β –γ .
Test for two examples:

i) α = 10
◦
, β = 20

◦
, γ = 30

◦
.

ii) α = 30
◦
, β = 90

◦
, γ = −55

◦
.

For case (i), demonstrate the six constraints for unitary orthonormal rotation matri-
ces (i.e., there are nine numbers in a 3 × 3 matrix, but only three are independent).
Also, demonstrate the beautiful property, B

AR = A
BR−1 = A

BRT , for case (i).
b) Write a MATLAB program to calculate the Euler angles α–β –γ when the user

enters the rotation matrix A
BR (the inverse problem). Calculate both possible solu-

tions. Demonstrate this inverse solution for the two cases from part (a). Use a
circular check to verify your results (i.e., enter Euler angles in code a from part
(a); take the resulting rotation matrix A

BR, and use this as the input to code b; you
get two sets of answers—one should be the original user input, and the second can
be verified by once again using the code in part (a).

c) For a simple rotation of β about the Y axis only, for β = 20
◦

and BP = {1 0 1 }T ,
calculate AP ; demonstrate with a sketch that your results are correct.

d) Check all results, by means of the Corke Robotics Toolbox for MATLAB®. Try the
functions rpy2tr(), tr2rpy(), rotx(), roty(), and rotz().

MATLAB EXERCISE 2B

a) Write a MATLAB program to calculate the homogeneous transformation matrix
A
BT when the user enters Z–Y –X Euler angles α − β − γ and the position
vector APB . Test for two examples:

i) α = 10
◦
, β = 20

◦
, γ = 30

◦
, and APB = {1 2 3 }T .

ii) For β = 20
◦

(α = γ = 0
◦
), APB = {3 0 1 }T .

b) For β = 20
◦

(α = γ = 0
◦
), APB = {3 0 1}T , and BP = {1 0 1}T , use MATLAB to

calculate AP ; demonstrate with a sketch that your results are correct. Also, using
the same numbers, demonstrate all three interpretations of the homogeneous
transformation matrix—the (b) assignment is the second interpretation, transform
mapping.

c) Write a MATLAB program to calculate the inverse homogeneous transformation
matrix A

BT −1 = B
AT , using the symbolic formula. Compare your result with a numer-

ical MATLAB function (e.g., inv). Demonstrate that both methods yield correct
results (i.e., A

BT A
BT −1 = A

BT −1 A
BT = I4). Demonstrate this for examples (i) and

(ii) from (a) above.
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d) Define A
BT to be the result from (a)(i) and B

CT to be the result from (a)(ii).

i) Calculate A
CT , and show the relationship via a transform graph. Do the same

for C
AT .

ii) Given A
CT and B

CT from (d)(i)—assume you don’t know A
BT , calculate it, and

compare your result with the answer you know.
iii) Given A

CT and A
BT from (d)(i)—assume you don’t know B

CT , calculate it, and
compare your result with the answer you know.

e) Check all results by means of the Corke Robotics Toolbox for MATLAB®. Try
functions rpy2tr() and transl().
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C H A P T E R 3

Manipulator Kinematics

3.1 INTRODUCTION
3.2 LINK DESCRIPTION
3.3 LINK-CONNECTION DESCRIPTION
3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS
3.5 MANIPULATOR KINEMATICS
3.6 ACTUATOR SPACE, JOINT SPACE, AND CARTESIAN SPACE
3.7 EXAMPLES: KINEMATICS OF TWO INDUSTRIAL ROBOTS
3.8 FRAMES WITH STANDARD NAMES
3.9 WHERE IS THE TOOL?
3.10 COMPUTATIONAL CONSIDERATIONS

3.1 INTRODUCTION

Kinematics is the science of motion that treats the subject without regard to the
forces that cause it. Within the science of kinematics, one studies the position, the
velocity, the acceleration, and all higher order derivatives of the position variables
[with respect to time or any other variable(s)]. Hence, the study of the kinematics of
manipulators refers to all the geometrical and time-based properties of the motion.
The relationships between these motions and the forces and torques that cause them
constitute the problem of dynamics, which will be the subject of Chapter 6.

In this chapter, we consider the position and orientation of the manipulator
linkages in static situations. In Chapters 5 and 6, we will consider the kinematics
when velocities and accelerations are involved.

In order to deal with the complex geometry of a manipulator, we will affix
frames to the various parts of the mechanism, then describe the relationships
between these frames. The study of manipulator kinematics involves, among other
things, how the locations of these frames change as the mechanism articulates. The
central topic of this chapter is a method to compute the position and orientation of
the manipulator’s end-effector relative to the base of the manipulator as a function
of the joint variables.

3.2 LINK DESCRIPTION

A manipulator may be thought of as a set of bodies connected in a chain by joints.
These bodies are called links. Joints form a connection between a neighboring pair
of links. The term lower pair is used to describe the connection between a pair of
bodies when the relative motion is characterized by two surfaces sliding over one
another. Figure 3.1 shows the six possible lower pair joints.

75
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Revolute

Cylindrical

Screw

Prismatic

Planar

Spherical

FIGURE 3.1: The six possible lower-pair joints.

Mechanical-design considerations favor manipulators’ generally being con-
structed from joints that exhibit just one degree of freedom. Most manipulators
have revolute joints or have sliding joints called prismatic joints. In the rare case
that a mechanism is built with a joint having n degrees of freedom, it can be modeled
as n joints of one degree of freedom connected with n − 1 links of zero length.
Therefore, without loss of generality, we will consider only manipulators that have
joints with a single degree of freedom.

The links are numbered starting from the immobile base of the arm, which
might be called link 0. The first moving body is link 1, and so on, out to the free
end of the arm, which is link n. In order to position an end-effector generally in
3-space, a minimum of six joints is required.1 Typical manipulators have five or six
joints. Some robots are not actually as simple as a single kinematic chain—these
have parallelogram linkages or other closed kinematic structures. We will consider
one such manipulator later in this chapter.

A single link of a typical robot has many attributes that a mechanical designer
had to consider during its design: the type of material used, the strength and stiff-
ness of the link, the location and type of the joint bearings, the external shape, the
weight and inertia, and more. However, for the purposes of obtaining the kinematic
equations of the mechanism, a link is considered only as a rigid body that defines

1This makes good intuitive sense, because the description of an object in space requires six
parameters: three for position and three for orientation.



“runall”
2021/5/17
page 77

�

�

�

�

�

�

�

�

Section 3.2 Link Description 77

the relationship between two neighboring joint axes of a manipulator. Joint axes are
defined by lines in space. Joint axis i is defined by a line in space, or a vector direc-
tion, about which link i rotates relative to link i − 1. It turns out that, for kinematic
purposes, a link can be specified with two numbers, which define the relative location
of the two axes in space.

For any two axes in 3-space, there exists a well-defined measure of distance
between them. This distance is measured along a line that is mutually perpendicu-
lar to both axes. This mutual perpendicular always exists; it is unique except when
both axes are parallel, in which case there are many mutual perpendiculars of equal
length. Figure 3.2 shows link i − 1 and the mutually perpendicular line along which
the link length, ai−1, is measured. Another way to visualize the link parameter ai−1
is to imagine an expanding cylinder whose axis is the joint i − 1 axis. When it just
touches joint axis i, the radius of the cylinder is equal to ai−1.

The second parameter needed to define the relative location of the two axes
is called the link twist. If we imagine a plane whose normal is the mutually perpen-
dicular line just constructed, we can project the axes i − 1 and i onto this plane and
measure the angle between them. This angle is measured from axis i − 1 to axis i

in the right-hand sense about ai−1.2 We will use this definition of the twist of link
i − 1, αi−1. In Fig. 3.2, αi−1 is indicated as the angle between axis i − 1 and axis i.

Link i 2 1

ai 2 1

αi 2 1

Axis i 2 1 Axis i

FIGURE 3.2: The kinematic function of a link is to maintain a fixed relationship
between the two joint axes it supports. This relationship can be described with two
parameters: the link length, a, and the link twist, α.

2In this case, ai−1 is given the direction pointing from axis i − 1 to axis i.
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45

2 in. 2 in.
Bearing “A” Bearing “B”

3 in.

2 in. 2 in.5 in.

FIGURE 3.3: A simple link that supports two revolute axes.

(The lines with the triple hash marks are parallel.) In the case of intersecting axes,
twist is measured in the plane containing both axes, but the sense of αi−1 is lost. In
this special case, one is free to assign the sign of αi−1 arbitrarily.

You should convince yourself that these two parameters, length and twist, as
defined above, can be used to define the relationship between any two lines (in this
case axes) in space.

EXAMPLE 3.1

Figure 3.3 shows the mechanical drawings of a robot link. If this link is used in a
robot, with bearing “A” used for the lower-numbered joint, give the length and twist
of this link. Assume that holes are centered in each bearing.

By inspection, the common perpendicular lies right down the middle of the
metal bar connecting the bearings, so the link length is 7 inches. The end view actu-
ally shows a projection of the bearings onto the plane whose normal is the mutual
perpendicular. Link twist is measured in the right-hand sense about the common
perpendicular from axis i − 1 to axis i, so, in this example, it is clearly +45 degrees.

3.3 LINK-CONNECTION DESCRIPTION

The problem of connecting the links of a robot together is again one filled with many
questions for the mechanical designer to resolve. These include the strength of the
joint, its lubrication, and the bearing and gearing mounting. However, for the investi-
gation of kinematics, we need only worry about two quantities, which will completely
specify the way in which links are connected together.
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Intermediate Links in the Chain

Neighboring links have a common joint axis between them. One parameter of inter-
connection has to do with the distance along this common axis from one link to the
next. This parameter is called the link offset. The offset at joint axis i is called di . The
second parameter describes the amount of rotation about this common axis between
one link and its neighbor. This is called the joint angle, θi .

Figure 3.4 shows the interconnection of link i − 1 and link i. Recall that ai−1
is the mutual perpendicular between the two axes of link i − 1. Likewise, ai is the
mutual perpendicular defined for link i. The first parameter of interconnection is
the link offset, di , which is the signed distance measured along the axis of joint i

from the point where ai−1 intersects the axis, to the point where ai intersects the axis.
The offset di is indicated in Fig. 3.4. The link offset di is variable if joint i is prismatic.
The second parameter of interconnection is the angle made between an extension of
ai−1 and ai measured about the axis of joint i. This is indicated in Fig. 3.4, where
the lines with the double hash marks are parallel. This parameter is named θi and is
variable for a revolute joint.

First and Last Links in the Chain

Link length, ai , and link twist, αi , depend on joint axes i and i + 1. Hence, a1 through
an−1, and α1 through αn−1, are defined as was discussed in this section. At the ends
of the chain, it will be our convention to assign zero to these quantities. That is,

ai

θi

Axis i 2 1

Link i 2 1

Link i

Axis i

di

α i 2 1

a i 2 1

FIGURE 3.4: The link offset, di , and the joint angle, θi , are two parameters that may
be used to describe the nature of the connection between neighboring links.
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a0 = an = 0.0 and α0 = αn = 0.0.3 Link offset, di , and joint angle, θi , are well defined
for joints 2 through n − 1 according to the conventions discussed in this section. If
joint 1 is revolute, the zero position for θ1 may be chosen arbitrarily; d1 = 0.0 will be
our convention. Similarly, if joint 1 is prismatic, the zero position of d1 may be cho-
sen arbitrarily; θ1 = 0.0 will be our convention. Exactly the same statements apply
to joint n.

These conventions have been chosen so that, in a case where a quantity could
be assigned arbitrarily, a zero value is assigned so later calculations will be as simple
as possible.

Link Parameters

Hence, any robot can be described kinematically by giving the values of four quanti-
ties for each link. Two describe the link itself, and two describe the link’s connection
to a neighboring link. In the usual case of a revolute joint, θi is called the joint vari-
able, and the other three quantities would be fixed link parameters. For prismatic
joints, di is the joint variable, and the other three quantities are fixed link param-
eters. The definition of mechanisms by means of these quantities is a convention
usually called the Denavit–Hartenberg notation [1].4 Other methods of describing
mechanisms are available, but are not presented here.

At this point, we could inspect any mechanism and determine the Denavit–
Hartenberg parameters that describe it. For a six-jointed robot, 18 numbers would
be required to completely describe the fixed portion of its kinematics. In the case of
a six-jointed robot with all revolute joints, the 18 numbers are in the form of six sets
of (ai , αi , di).

EXAMPLE 3.2

Two links, as described in Fig. 3.3, are connected as links 1 and 2 of a robot. Joint 2
is composed of a “B” bearing of link 1 and an “A” bearing of link 2, arranged so that
the flat surfaces of the “A” and “B” bearings lie flush against each other. What is d2?

The link offset d2 is the offset at joint 2, which is the distance, measured along
the joint 2 axis, between the mutual perpendicular of link 1 and that of link 2. From
the drawings in Fig. 3.3, this is 2.5 inches.

Before introducing more examples, we will define a convention for attaching a
frame to each link of the manipulator.

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

In order to describe the location of each link relative to its neighbors, we define a
frame attached to each link. The link frames are named by number according to the
link to which they are attached. That is, frame {i} is attached rigidly to link i.

3In fact, an and αn do not need to be defined at all.
4Note that many related conventions go by the name Denavit–Hartenberg, but differ in a few details.

For example, the version used in this book differs from some of the robotic literature in the manner of
frame numbering. Unlike some other conventions, in this book frame {i} is attached to link i and has its
origin lying on joint axis i.
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Intermediate Links in the Chain

The convention we will use to locate frames on the links is as follows: The Ẑ-axis
of frame {i}, called Ẑi , is coincident with the joint axis i. The origin of frame {i} is
located where the ai perpendicular intersects the joint i axis. X̂i points along ai in
the direction from joint i to joint i + 1.

In the case of ai = 0, X̂i is normal to the plane of Ẑi and Ẑi+1. We define αi

as being measured in the right-hand sense about X̂i , so we see that the freedom of
choosing the sign of αi in this case corresponds to two choices for the direction of X̂i .
Ŷi is formed by the right-hand rule to complete the ith frame. Figure 3.5 shows the
location of frames {i − 1} and {i} for a general manipulator.

First and Last Links in the Chain

We attach a frame to the base of the robot, or link 0, called frame {0}. This frame
does not move; for the problem of arm kinematics, it can be considered the reference
frame. We may describe the position of all other link frames in terms of this frame.

Frame {0} is arbitrary, so it always simplifies matters to choose Ẑ0 along axis
1, and to locate frame {0} so that it coincides with frame {1} when joint variable 1
is zero. Using this convention, we will always have a0 = 0.0, α0 = 0.0. Additionally,
this ensures that d1 = 0.0 if joint 1 is revolute, or θ1 = 0.0 if joint 1 is prismatic.

For joint n revolute, the direction of X̂N is chosen so that it aligns with X̂N−1
when θn = 0.0, and the origin of frame {N} is chosen so that dn = 0.0. For joint n

ai

θi

Axis i 2 1

Link i 2 1

Link i

Axis i

di
ai 2 1

αi 2 1

Xi
Xi 2 1

Yi 2 1

Zi 2 1

Zi

Yi

FIGURE 3.5: Link frames are attached so that frame {i} is attached rigidly to link i.
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82 Chapter 3 Manipulator Kinematics

prismatic, the direction of X̂N is chosen so that θn = 0.0, and the origin of frame {N}
is chosen at the intersection of X̂N−1 and joint axis n when dn = 0.0.

Summary of the Link Parameters in Terms of the Link Frames

If the link frames have been attached to the links according to our convention, the
following definitions of the link parameters are valid:

ai = the distance from Ẑi to Ẑi+1 measured along X̂i;
αi = the angle from Ẑi to Ẑi+1 measured about X̂i;
di = the distance from X̂i−1 to X̂i measured along Ẑi; and

θi = the angle from X̂i−1 to X̂i measured about Ẑi .

We usually choose ai > 0, because it corresponds to a distance; however, αi , di ,
and θi are signed quantities.

A final note on uniqueness is warranted. The convention outlined above does
not result in a unique attachment of frames to links. First of all, when we initially
align the Ẑi axis with joint axis i, there are two choices of direction in which to point
Ẑi . Furthermore, in the case of intersecting joint axes (i.e., ai = 0), there are two
choices for the direction of X̂i , corresponding to the choice of signs for the normal
to the plane containing Ẑi and Ẑi+1. When axes i and i + 1 are parallel, the choice
of origin location for {i} is arbitrary (though generally chosen in order to cause di to
be zero). Also, when prismatic joints are present, there is quite a bit of freedom in
frame assignment (see also Example 3.5).

Summary of Link-Frame Attachment Procedure

The following is a summary of the procedure to follow when faced with a new mech-
anism, in order to properly attach the link frames. Given two axes i and i + 1:

1. Identify the joint axes and imagine (or draw) infinite lines along them. For
steps 2 through 5 below, consider two of these neighboring lines.

2. Identify the common perpendicular between i and i + 1, or point of intersec-
tion. At the point of intersection, or at the point where the common perpen-
dicular meets the ith axis, assign the ith link-frame origin.

3. Assign the Ẑi axis pointing along the ith joint axis.
4. Assign the X̂i axis pointing along the common perpendicular, or, if the axes

intersect, assign X̂i to be normal to the plane containing the two axes.
5. Assign the Ŷi axis to complete a right-hand coordinate system.
6. Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an

origin location and X̂N direction freely, but generally so as to cause as many
linkage parameters as possible to become zero.

EXAMPLE 3.3

Figure 3.6(a) shows a three-link planar arm. Because all three joints are revolute,
this manipulator is sometimes called an RRR (or 3R) mechanism. Figure 3.6(b) is
a schematic representation of the same manipulator. Note the double hash marks



“runall”
2021/5/17
page 83

�

�

�

�

�

�

�

�

Section 3.4 Convention for Affixing Frames to Links 83

L3

θ3

L1

θ1

θ2
L2

(a) (b)

FIGURE 3.6: A three-link planar arm. On the right, we show the same manipulator by
means of a simple schematic notation. Hash marks on the axes indicate that they are
mutually parallel.

indicated on each of the three axes, which indicate that these axes are parallel. Assign
link frames to the mechanism and give the Denavit–Hartenberg parameters.

We start by defining the reference frame, frame {0}. It is fixed to the base and
aligns with frame {1} when the first joint variable (θ1) is zero. Therefore, we position
frame {0} as shown in Fig. 3.7 with Ẑ0 aligned with the joint-1 axis. For this arm, all
joint axes are oriented perpendicular to the plane of the arm. Because the arm lies
in a plane with all Ẑ axes parallel, there are no link offsets—all di are zero. All joints
are rotational, so when they are at zero degrees, all X̂ axes must align.

With these comments in mind, it is easy to find the frame assignments shown
in Fig. 3.7. The corresponding link parameters are shown in Fig. 3.8.

Note that, because the joint axes are all parallel and all the Ẑ axes are taken as
pointing out of the paper, all αi are zero. This is obviously a very simple mechanism.
Note also that our kinematic analysis always ends at a frame whose origin lies on the
last joint axis; therefore, l3 does not appear in the link parameters. Such final offsets
to the end-effector will be dealt with separately later.

EXAMPLE 3.4

Figure 3.9(a) shows a robot having three degrees of freedom and one prismatic joint.
This manipulator can be called an “RPR mechanism,” in a notation that specifies the
type and order of the joints. It is a “cylindrical” robot whose first two joints are anal-
ogous to polar coordinates when viewed from above. The last joint (joint 3) provides
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X2

X0

X1

X3

Y1

Y0 Y2

Y3

FIGURE 3.7: Link-frame assignments.

i αi 2 1 ai 2 1 di θi

1 0 0 0 θ1

2 0 L1 0 θ2

3 0 L2 0 θ3

FIGURE 3.8: Link parameters of the three-link planar manipulator.

“roll” for the hand. Figure 3.9(b) shows the same manipulator in schematic form.
Note the symbol used to represent prismatic joints, and note a “dot” is used to indi-
cate the point at which two adjacent axes intersect. Also, the fact that axes 1 and 2
are orthogonal has been indicated.

Figure 3.10(a) shows the manipulator with the prismatic joint at minimum
extension; the assignment of link frames is shown in Fig. 3.10(b).

Note that frame {0} and frame {1} are shown as exactly coincident in this figure,
because the robot is drawn for the position θ1 = 0. Note that frame {0}, although not
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Joint 1

Joint 2 Joint 3

(a) (b)

FIGURE 3.9: Manipulator having three degrees of freedom and one prismatic joint.

(a) (b)

L2 L3

L1 L2

X3X2X1

Y1

Y3

Z2

Z3

Z1

FIGURE 3.10: Link-frame assignments.

at the bottom of the flanged base of the robot, is nonetheless rigidly affixed to link 0,
the nonmoving part of the robot. Just as our link frames are not used to describe the
kinematics all the way out to the hand, they need not be attached all the way back
to the lowest part of the base of the robot. It is sufficient that frame {0} be attached
anywhere to the nonmoving link 0, and that frame {N}, the final frame, be attached
anywhere to the last link of the manipulator. Other offsets can be handled later in a
general way.

Note that rotational joints rotate about the Ẑ axis of the associated frame, but
prismatic joints slide along Ẑ. In the case where joint i is prismatic, θi is a fixed con-
stant, and di is the variable. If di is zero at minimum extension of the link, then frame
{2} should be attached where shown, so that d2 will give the true offset. The link
parameters are shown in Fig. 3.11.

Note that θ2 is zero for this robot, and that d2 is a variable. Axes 1 and 2 inter-
sect, so a1 is zero. Angle α1 must be 90 degrees in order to rotate Ẑ1 so as to align
with Ẑ2 (about X̂1).
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i αi 2 1 ai 2 1 di θi

1 0 0 0 θ1

2 0 d2 0

3 0 0 L2 θ3

90

FIGURE 3.11: Link parameters for the RPR manipulator of Example 3.4.

EXAMPLE 3.5

Figure 3.12(a) shows a three-link, 3R manipulator for which joint axes 1 and 2 inter-
sect and axes 2 and 3 are parallel. Figure 3.12(b) shows the kinematic schematic of
the manipulator. Note that the schematic includes annotations indicating that the
first two axes are orthogonal and that the last two are parallel.

Demonstrate the nonuniqueness of frame assignments and of the Denavit–
Hartenberg parameters by showing several possible correct assignments of frames
{1} and {2}.

Figure 3.13 shows two possible frame assignments and corresponding parame-
ters for the two possible choices of direction of Ẑ2.

In general, when Ẑi and Ẑi + 1 intersect, there are two choices for X̂i . In this
example, joint axes 1 and 2 intersect, so there are two choices for the direction of

(a) (b)

L1

L2

FIGURE 3.12: Three-link, nonplanar manipulator.
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Y1 Y1

a1 5 0

d1 5 0

α1 5 290

a1 5 0

d1 5 0

a2 5 L2

d2 5 L1

α2 5 0 θ2 5 290 α1 5 90 θ2 5 90

a2 5 L2

d2 5 2L1

α2 5 0

X2

X1

X2

X1

Y2

Y2

Z2

Z1

Z2

Z1

FIGURE 3.13: Two possible frame assignments.

a1 5 0

d1 5 0

a1 5 0

d1 5 0

α1 5 90 θ2 5 90

a2 5 L2

d2 5 L1

α2 5 0 α1 5 290 θ2 5 290

a2 5 L2

d2 5 2L1

α2 5 0

X2X1
X2X1

Y2

Y2

Y1Y1

Z2

Z1

Z2

Z1

FIGURE 3.14: Two more possible frame assignments.

X̂1. Figure 3.14 shows two more possible frame assignments, corresponding to the
second choice of X̂1.

In fact, there are four more possibilities, corresponding to the preceding four
choices, but with Ẑ1 pointing downward.

3.5 MANIPULATOR KINEMATICS

In this section, we derive the general form of the transformation that relates the
frames attached to neighboring links. We then concatenate these individual transfor-
mations to solve for the position and orientation of link n relative to link 0.
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Derivation of Link Transformations

We wish to construct the transform that defines frame {i} relative to the frame {i − 1}.
In general, this transformation will be a function of the four link parameters. For any
given robot, this transformation will be a function of only one variable, the other
three parameters being fixed by mechanical design. By defining a frame for each
link, we have broken the kinematics problem into n subproblems. In order to solve
each of these subproblems, namely i−1

iT , we will further break each subproblem into
four subsubproblems. Each of these four transformations will be a function of one
link parameter only, and will be simple enough that we can write down its form by
inspection. We begin by defining three intermediate frames for each link: {P }, {Q},
and {R}.

Figure 3.15 shows the same pair of joints as before with frames {P }, {Q}, and
{R} defined. Note that only the X̂ and Ẑ axes are shown for each frame, to make
the drawing clearer. Frame {R} differs from frame {i − 1} only by a rotation of αi−1.
Frame {Q} differs from {R} by a translation ai−1. Frame {P } differs from {Q} by a
rotation θi , and frame {i} differs from {P } by a translation di . If we wish to write the
transformation that transforms vectors defined in {i} to their description in {i − 1},
we may write

i−1P = i−1
RT R

QT
Q
PT P

iT
iP, (3.1)

or
i−1P = i−1

iT
iP , (3.2)

where
i−1

iT = i−1
RT R

QT
Q
PT P

iT . (3.3)

θi

Axis i 2 1

Link i 2 1

Link i

Axis i

di
ai 2 1

αi 2 1

Xi

XP

XQ

Xi 2 1
XR

ZQ

ZP

Zi

Zi 2 1

ZR

FIGURE 3.15: Location of intermediate frames {P }, {Q}, and {R}.
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Considering each of these transformations, we see that (3.3) may be written as

i−1
iT = RX(αi−1)DX(ai−1)RZ(θi)DZ(di), (3.4)

or
i−1

iT = ScrewX(ai−1, αi−1) ScrewZ(di, θi), (3.5)

where the notation ScrewQ(r, φ) stands for the combination of a translation along an
axis Q̂ by a distance r , and a rotation about the same axis by an angle φ. Multiplying
out (3.4), we obtain the general form of i−1

iT :

i−1
iT =

⎡
⎢⎢⎣

cθi −sθi 0 ai−1
sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

⎤
⎥⎥⎦ . (3.6)

EXAMPLE 3.6

Using the link parameters shown in Fig. 3.11 for the robot of Fig. 3.9, compute the
individual transformations for each link.

Substituting the parameters into (3.6), we obtain

0
1T =

⎡
⎢⎢⎣

cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

1
2T =

⎡
⎢⎢⎣

1 0 0 0
0 0 −1 −d2
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ , and (3.7)

2
3T =

⎡
⎢⎢⎣

cθ3 −sθ3 0 0
sθ3 cθ3 0 0
0 0 1 l2
0 0 0 1

⎤
⎥⎥⎦ .

Once having derived these link transformations, we will find it a good idea to check
them against common sense. For example, the elements of the fourth column of each
transform should give the coordinates of the origin of the next higher frame.

Concatenating Link Transformations

Once the link frames have been defined and the corresponding link parameters
found, developing the kinematic equations is straightforward. From the values of
the link parameters, the individual link-transformation matrices can be computed.
Then, the link transformations can be multiplied together to find the single transfor-
mation that relates frame {N} to frame {0}:

0
NT = 0

1T
1
2T

2
3T . . . N−1

NT . (3.8)
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This transformation, 0
NT , will be a function of all n joint variables. If the robot’s

joint-position sensors are queried, the Cartesian position and orientation of the
last link can be computed by 0

NT .

3.6 ACTUATOR SPACE, JOINT SPACE, AND CARTESIAN SPACE

The position of all the links of a manipulator of n degrees of freedom can be specified
with a set of n joint variables. This set of variables is often referred to as the n × 1 joint
vector. The space of all such joint vectors is referred to as joint space. Thus far in this
chapter, we have been concerned with computing the Cartesian space description
from knowledge of the joint-space description. We use the term Cartesian space when
position is measured along orthogonal axes, and orientation is measured according
to any of the conventions outlined in Chapter 2. Sometimes, the terms task-oriented
space and operational space are used for what we will call Cartesian space.

So far, we have implicitly assumed that each kinematic joint is actuated directly
by some sort of actuator. However, in the case of many industrial robots, this is not so.
For example, sometimes two actuators work together in a differential pair to move a
single joint, or sometimes a linear actuator is used to rotate a revolute joint, through
the use of a four-bar linkage. In these cases, it is helpful to consider the notion of
actuator positions. The sensors that measure the position of the manipulator are often
located at the actuators, so some computations must be performed to realize the joint
vector as a function of a set of actuator values, or actuator vector.

As is indicated in Fig. 3.16, there are three representations of a manipulator’s
position and orientation: descriptions in actuator space, in joint space, and in Carte-
sian space. In this chapter, we are concerned with the mappings between represen-
tations, as indicated by the solid arrows in Fig. 3.16. In Chapter 4, we will consider
the inverse mappings, indicated by the dashed arrows.

The ways in which actuators might be connected to move a joint are quite
varied; they might be catalogued, but we will not do so here. For each robot we
design or seek to analyze, the correspondence between actuator positions and joint
positions must be solved. In the next section, we will solve an example problem for
an industrial robot.

3.7 EXAMPLES: KINEMATICS OF TWO INDUSTRIAL ROBOTS

Current industrial robots are available in many different kinematic configurations
[2], [3]. In this section, we will work out the kinematics of two typical industrial

Actuator
space

Joint
space

Cartesian
space

FIGURE 3.16: Mappings between kinematic descriptions.
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robots. First, we will consider the Unimation PUMA 560, a rotary-joint manipulator
with six degrees of freedom. We will solve for the kinematic equations as functions of
the joint angles. For this example, we will skip the additional problem of the relation-
ship between actuator space and joint space. Second, we will consider the Yasukawa
Motoman L-3, a robot with five degrees of freedom and rotary joints. This example
is done in detail, including the actuator-to-joint transformations, and may be skipped
on first reading of the book.

The PUMA 560

The Unimation PUMA 560 (Fig. 3.17) is a robot with six degrees of freedom and
all rotational joints (i.e., it is a 6R mechanism). It is shown in Fig. 3.18, with link-
frame assignments in the position corresponding to all joint angles equal to zero.5

Figure 3.19 shows a detail of the forearm of the robot.

FIGURE 3.17: The Unimation PUMA 560. Courtesy of Unimation Incorporated,
Shelter Rock Lane, Danbury, Conn.

5Unimation has used a slightly different assignment of zero location of the joints, such that θ∗
3 = θ3 −

180◦, where θ∗
3 is the position of joint 3 in Unimation’s convention.
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a2

d3

X1

X2

Y4

Y3

Y1

Y2

Z4

X4

X3

Z3

Z1

Z2

FIGURE 3.18: Some kinematic parameters and frame assignments for the PUMA 560
manipulator.

Note that frame {0} (not shown) is coincident with frame {1} when θ1 is zero.
Note also that, for this robot, as for many industrial robots, the joint axes of joints
4, 5, and 6 all intersect at a common point, and this point of intersection coincides
with the origin of frames {4}, {5}, and {6}. Furthermore, the joint axes 4, 5, and 6 are
mutually orthogonal. This wrist mechanism is illustrated schematically in Fig. 3.20.

The link parameters corresponding to this placement of link frames are shown
in Fig. 3.21. In the case of the PUMA 560, a gearing arrangement in the wrist of the
manipulator couples together the motions of joints 4, 5, and 6. What this means is,
for these three joints, we must make a distinction between joint space and actuator
space, and solve the complete kinematics in two steps. However, in this example, we
will consider only the kinematics from joint space to Cartesian space.
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X3

X6

X4

X5

Z6

Z4

Y3

Y5

a3

d4

FIGURE 3.19: Kinematic parameters and frame assignments for the forearm of the
PUMA 560 manipulator.

θ4

θ5

θ6

FIGURE 3.20: Schematic of a 3R wrist in which all three axes intersect at a point and
are mutually orthogonal. This design is used in the PUMA 560 manipulator and many
other industrial robots.

Using (3.6), we compute each of the link transformations:

0
1T =

⎡
⎢⎢⎣

cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,
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6

5

4

3

2

1

i

0

0

αi 2 1 ai 2 1

0

0

a3

a2

0

0

0

0

d4

d3

0

0

di

θ6

θ5

θ4

θ3

θ2

θ1

θi

290

90

290

290

FIGURE 3.21: Link parameters of the PUMA 560.

1
2T =

⎡
⎢⎢⎣

cθ2 −sθ2 0 0
0 0 1 0

−sθ2 −cθ2 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

2
3T =

⎡
⎢⎢⎣

cθ3 −sθ3 0 a2
sθ3 cθ3 0 0
0 0 1 d3
0 0 0 1

⎤
⎥⎥⎦ ,

3
4T =

⎡
⎢⎢⎣

cθ4 −sθ4 0 a3
0 0 1 d4

−sθ4 −cθ4 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

4
5T =

⎡
⎢⎢⎣

cθ5 −sθ5 0 0
0 0 −1 0

sθ5 cθ5 0 0
0 0 0 1

⎤
⎥⎥⎦ , and

5
6T =

⎡
⎢⎢⎣

cθ6 −sθ6 0 0
0 0 1 0

−sθ6 −cθ6 0 0
0 0 0 1

⎤
⎥⎥⎦ . (3.9)
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We now form 0
6T by matrix multiplication of the individual link matrices. While

forming this product, we will derive some subresults that will be useful when solv-
ing the inverse kinematic problem in Chapter 4. We start by multiplying 4

5T and 5
6T ;

that is,

4
6T = 4

5T
5
6T =

⎡
⎢⎢⎣

c5c6 −c5s6 −s5 0
s6 c6 0 0

s5c6 −s5s6 c5 0
0 0 0 1

⎤
⎥⎥⎦ , (3.10)

where c5 is shorthand for cos θ5, s5 for sin θ5, and so on.6 Then we have

3
6T = 3

4T
4
6T =

⎡
⎢⎢⎣

c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5 a3
s5c6 −s5s6 c5 d4

−s4c5c6 − c4s6 s4c5s6 − c4c6 s4s5 0
0 0 0 1

⎤
⎥⎥⎦ . (3.11)

Because joints 2 and 3 are always parallel, multiplying 1
2T and 2

3T first then applying
sum-of-angle formulas will yield a somewhat simpler final expression. This can be
done whenever two rotational joints have parallel axes and we have

1
3T = 1

2T
2
3T =

⎡
⎢⎢⎣

c23 −s23 0 a2c2
0 0 1 d3

−s23 −c23 0 −a2s2
0 0 0 1

⎤
⎥⎥⎦ , (3.12)

where we have used the sum-of-angle formulas (from Appendix A):

c23 = c2c3 − s2s3,

s23 = c2s3 + s2c3.

Then, we have

1
6T = 1

3T
3
6T =

⎡
⎢⎢⎣

1r11
1r12

1r13
1px

1r21
1r22

1r23
1py

1r31
1r32

1r33
1pz

0 0 0 1

⎤
⎥⎥⎦ ,

where
1r11 = c23[c4c5c6 − s4s6] − s23s5s6,
1r21 = −s4c5c6 − c4s6,
1r31 = −s23[c4c5c6 − s4s6] − c23s5c6,
1r12 = −c23[c4c5s6 + s4c6] + s23s5s6,
1r22 = s4c5s6 − c4c6,
1r32 = s23[c4c5s6 + s4c6] + c23s5s6,
1r13 = −c23c4s5 − s23c5,
1r23 = s4s5,
1r33 = s23c4s5 − c23c5,
1px = a2c2 + a3c23 − d4s23,
1py = d3, and
1px = −a3s23 − a2s2 − d4c23.

(3.13)

6Depending on the amount of space available to show expressions, we use any of the following three
forms: cos θ5, cθ5, or c5.



“runall”
2021/5/17
page 96

�

�

�

�

�

�

�

�

96 Chapter 3 Manipulator Kinematics

Finally, we obtain the product of all six link transforms:

0
6T = 0

1T
1
6T =

⎡
⎢⎢⎣

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

⎤
⎥⎥⎦ .

Here,

r11 = c1[c23(c4c5c6 − s4s6) − s23s5c6] + s1(s4c5c6 + c4s6),

r21 = s1[c23(c4c5c6 − s4s6) − s23s5c6] − c1(s4c5c6 + c4s6),

r31 = −s23(c4c5c6 − s4s6) − c23s5c6,

r12 = c1[c23(−c4c5s6 − s4c6) + s23s5s6] + s1(c4c6 − s4c5s6),

r22 = s1[c23(−c4c5s6 − s4c6) + s23s5s6] − c1(c4c6 − s4c5s6),

r32 = −s23(−c4c5s6 − s4c6) + c23s5s6,

r13 = −c1(c23c4s5 + s23c5) − s1s4s5,

r23 = −s1(c23c4s5 + s23c5) + c1s4s5,

r33 = s23c4s5 − c23c5,

px = c1[a2c2 + a3c23 − d4s23] − d3s1,

py = s1[a2c2 + a3c23 − d4s23] + d3c1, and

pz = −a3s23 − a2s2 − d4c23. (3.14)

Equations (3.14) constitute the kinematics of the PUMA 560. They specify how to
compute the position and orientation of frame {6} relative to frame {0} of the robot.
These are the basic equations for all kinematic analysis of this manipulator.

The Yasukawa Motoman L-3

The Yasukawa Motoman L-3 is a popular industrial manipulator with five degrees
of freedom (see Fig. 3.22). Unlike the examples we have seen thus far, the Motoman
is not a simple open kinematic chain, but rather makes use of two linear actuators
coupled to links 2 and 3 with four-bar linkages. Also, through a chain drive, joints 4
and 5 are operated by two actuators in a differential arrangement.

In this example, we will solve the kinematics in two stages. First, we will solve
for joint angles from actuator positions; second, we will solve for Cartesian position
and orientation of the last link from joint angles. In this second stage, we can treat
the system as if it were a simple open-kinematic-chain 5R device.

Figure 3.23 shows the linkage mechanism that connects actuator number 2 to
links 2 and 3 of the robot. The actuator is a linear one that directly controls the length
of the segment labeled DC. Triangle ABC is fixed, as is the length BD. Joint 2 pivots
about point B, and the actuator pivots slightly about point C as the linkage moves.
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FIGURE 3.22: The Yasukawa Motoman L-3. Courtesy of Yasukawa.

We give the following names to the constants (lengths and angles) associated with
actuator 2:

γ2 = AB, φ2 = AC, α2 = BC,

β2 = BD,�2 = � JBD, l2 = BJ.

We give the following names to the variables:

θ2 = −� JBQ,ψ2 = � CBD, g2 = DC.

Figure 3.24 shows the linkage mechanism that connects actuator number 3 to
links 2 and 3 of the robot. The actuator is a linear one that directly controls the length
of the segment labeled HG. Triangle EFG is fixed, as is the length FH. Joint 3 pivots
about point J , and the actuator pivots slightly about point G as the linkage moves.
We give the following names to the constants (lengths and angles) associated with
actuator 3:

γ3 = EF, φ3 = EG,α3 = GF,

β3 = HF, l3 = JK.

We give the following names to the variables:

θ3 = � PJK, ψ3 = � GFH, g3 = GH.
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A

B

C

D

Q

J

M

FIGURE 3.23: Kinematic details of the Yasukawa actuator-2 linkage.

This arrangement of actuators and linkages has the following functional effect.
Actuator 2 is used to position joint 2; while it is doing so, link 3 remains in the same
orientation relative to the base of the robot. Actuator 3 is used to adjust the orienta-
tion of link 3 relative to the base of the robot (rather than relative to the preceding
link as in a serial-kinematic-chain robot). One purpose of such a linkage arrangement
is to increase the structural rigidity of the main linkages of the robot. This often pays
off in terms of an increased ability to position the robot precisely.

The actuators for joints 4 and 5 are attached to link 1 of the robot with their axes
aligned with that of joint 2 (points B and F in Figs. 3.23 and 3.24). They operate the
wrist joints through two sets of chains; one set located interior to link 2, the second
set interior to link 3. The effect of this transmission system, along with its interaction
with the actuation of links 2 and 3, is described functionally as follows: Actuator 4 is
used to position joint 4 relative to the base of the robot, rather than relative to the
preceding link 3. This means that holding actuator 4 constant will keep link 4 at a
constant orientation relative to the base of the robot, regardless of the positions of
joints 2 and 3. Finally, actuator 5 behaves as if directly connected to joint 5.

We now state the equations that map a set of actuator values (Ai) to the
equivalent set of joint values (θi). In this case, these equations were derived by
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EG

H

F

K

J

P

M

FIGURE 3.24: Kinematic details of the Yasukawa actuator-3 linkage.

straightforward plane geometry—mostly just application of the “law of cosines.”7

Appearing in these equations are scale (ki) and offset (λi) constants for each actu-
ator. For example, actuator 1 is directly connected to joint axis 1, and so the
conversion is simple; it is just a matter of a scale factor plus an offset. Thus,

θ1 = k1A1 + λ1,

θ2 = cos−1

(
(k2A2 + λ2)

2 − α2
2 − β2

2
−2α2β2

)
+ tan−1

(
φ2

γ2

)
+ �2 − 270◦,

θ3 = cos−1

(
(k3A3 + λ3)

2 − α2
3 − β2

3

−2α3β3

)
− θ2 + tan−1

(
φ3

γ3

)
− 90◦,

θ4 = −k4A4 − θ2 − θ3 + λ4 + 180◦, and (3.15)

θ5 = −k5A5 + λ5.

Figure 3.25 shows the attachment of the link frames. In this figure, the manipu-
lator is shown in a position corresponding to the joint vector 
 = (0,−90◦, 90◦,

7If a triangle’s angles are labeled a, b, and c, where angle a is opposite side A, and so on, then A2 =
B2 + C2 − 2BC cos a.
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Z5

Z4

Z2

Z3

Y3

X2

Z0, 1

X0, 1

X3

X5X4

FIGURE 3.25: Assignment of link frames for the Yasukawa L-3.

90◦, 0). Figure 3.26 shows the link parameters for this manipulator. The resulting
link-transformation matrices are

0
1T =

⎡
⎢⎢⎣

cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

1
2T =

⎡
⎢⎢⎣

cθ2 −sθ2 0 0
0 0 1 0

−sθ2 −cθ2 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

2
3T =

⎡
⎢⎢⎣

cθ3 −sθ3 0 l2
sθ3 cθ3 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (3.16)

3
4T =

⎡
⎢⎢⎣

cθ4 −sθ4 0 l3
sθ4 cθ4 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , and
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5

4

3

2

1

i

0

0

0

αi 2 1

0

L3

L2

0

0

ai 2 1

0

0

0

0

0

di

θ5

θ4

θ3

θ2

θ1

θi

290

90

FIGURE 3.26: Link parameters of the Yasukawa L-3 manipulator.

4
5T =

⎡
⎢⎢⎣

cθ5 −sθ5 0 0
0 0 −1 0

sθ5 cθ5 0 0
0 0 0 1

⎤
⎥⎥⎦ .

Forming the product to obtain 0
5T , we obtain

0
5T =

⎡
⎢⎢⎣

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

⎤
⎥⎥⎦ ,

where

r11 = c1c234c5 − s1s5,

r21 = s1c234c5 + c1s5,

r31 = −s234c5,

r12 = −c1c234s5 − s1c5,

r22 = −s1c234s5 + c1c5,

r32 = s234s5,
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r13 = c1s234,

r23 = s1s234,

r33 = c234,

px = c1(l2c2 + l3c23),

py = s1(l2c2 + l3c23), and

pz = −l2s2 − l3s23. (3.17)

We developed the kinematic equations for the Yasukawa Motoman in two
steps. In the first step, we computed a joint vector from an actuator vector; in the
second step, we computed a position and orientation of the wrist frame from the
joint vector. If we wish to compute only Cartesian position and not joint angles, it is
possible to derive equations that map directly from actuator space to Cartesian space.
These equations are somewhat simpler computationally than the two-step approach
(see Exercise 3.10).

3.8 FRAMES WITH STANDARD NAMES

As a matter of convention, it will be helpful if we assign specific names and locations
to certain “standard” frames associated with a robot and its workspace. Figure 3.27
shows a typical situation in which a robot has grasped some sort of tool, and is to
position the tool tip to a user-defined location. The five frames indicated in Fig. 3.27
are so often referred to that we will define names for them. The naming and subse-
quent use of these five frames in a robot programming and control system facilitates
providing general capabilities in an easily understandable way. All robot motions will
be described in terms of these frames.

Brief definitions of the frames shown in Fig. 3.27 follow.

hBj
hW j

hSj hGj

hT j

FIGURE 3.27: The standard frames.
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The Base Frame, {B}
{B} is located at the base of the manipulator. It is merely another name for frame
{0}. It is affixed to a nonmoving part of the robot, sometimes called link 0.

The Station Frame, {S}
{S} is located in a task-relevant location. In Fig. 3.28, it is at the corner of a table
upon which the robot is to work. As far as the user of this robot system is concerned,
{S} is the universe frame, and all actions of the robot are performed relative to it. It is
sometimes called the task frame, the world frame, or the universe frame. The station
frame is always specified with respect to the base frame, that is, B

ST .

The Wrist Frame, {W}
{W } is affixed to the last link of the manipulator. It is another name for frame {N},
the link frame attached to the last link of the robot. Very often, {W } has its origin
fixed at a point called the wrist of the manipulator, and {W } moves with the last link
of the manipulator. It is defined relative to the base frame—that is, {W } = B

WT = 0
NT .

The Tool Frame, {T}
{T } is affixed to the end of any tool the robot happens to be holding. When the hand
is empty, {T } is usually located with its origin between the fingertips of the robot.

Goal
frame

Station
frame

Base frame

Wrist frame

Tool frame

Pin

Camera

FIGURE 3.28: Example of the assignment of standard frames.
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The tool frame is always specified with respect to the wrist frame. In Fig. 3.28, the
tool frame is defined with its origin at the tip of a pin that the robot is holding.

The Goal Frame, {G}
{G} is a description of the location to which the robot is to move the tool. Specifi-
cally this means that, at the end of the motion, the tool frame should be brought to
coincidence with the goal frame. {G} is always specified relative to the station frame.
In Fig. 3.28, the goal is located at a hole into which we want the pin to be inserted.

All robot motions may be described in terms of these frames without loss of
generality. Their use helps to give us a standard language for talking about robot
tasks.

3.9 WHERE IS THE TOOL?

One of the first capabilities a robot must have is to be able to calculate the position
and orientation of the tool it is holding (or of its empty hand) with respect to a con-
venient coordinate system. That is, we wish to calculate the value of the tool frame,
{T }, relative to the station frame, {S}. Once B

WT has been computed via the kinematic
equations, we can use Cartesian transforms, as studied in Chapter 2, to calculate {T }
relative to {S}. Solving a simple transform equation leads to

S
T T = B

ST
−1 B

WT W
TT . (3.18)

Equation (3.18) implements what is called the WHERE function in some robot sys-
tems. It computes “where” the arm is. For the situation in Fig. 3.28, the output of
WHERE would be the position and orientation of the pin relative to the table top.

Equation (3.18) can be thought of as generalizing the kinematics. S
T T computes

the kinematics due to the geometry of the linkages, along with a general transform
(which might be considered a fixed link) at the base end (B

ST ), and another at the
end-effector (W

TT ). These extra transforms allow us to include tools with offsets and
twists, and to operate with respect to an arbitrary station frame.

3.10 COMPUTATIONAL CONSIDERATIONS

In many practical manipulator systems, the time required to perform kinematic cal-
culations is a consideration. In this section, we will briefly discuss various issues
involved in computing manipulator kinematics, as exemplified by (3.14), for the case
of the PUMA 560.

One choice to be made is the use of fixed- or floating-point representation of
the quantities involved. Many implementations use floating point for ease of soft-
ware development, because the programmer does not have to be concerned with
scaling operations capturing the relative magnitudes of the variables. However, when
speed is crucial, fixed-point representation is quite possible because the variables do
not have a large dynamic range, and these ranges are fairly well known. Rough esti-
mations of the number of bits needed in fixed-point representation seem to indicate
that 24 are sufficient [4].

By factoring equations such as (3.14), it is possible to reduce the number of
multiplications and additions, at the cost of creating local variables (usually a good
trade-off). The point is to avoid computing common terms over and over throughout
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the computation. There has been some application of computer-assisted automatic
factorization of such equations [5].

The major expense in calculating kinematics is often the calculation of the tran-
scendental functions (sine and cosine). When these functions are available as part
of a standard library, they are often computed from a series expansion at the cost
of many multiply times. At the expense of some required memory, many manipula-
tion systems employ table-lookup implementations of the transcendental functions.
Depending on the scheme, this reduces the amount of time required to calculate a
sine or cosine to two or three multiply times or less [6].

The computation of the kinematics as in (3.14) is redundant, in that nine
quantities are calculated to represent orientation. One means that usually reduces
computation is to calculate only two columns of the rotation matrix, then to
compute a cross product (requiring only six multiplications and three additions)
to compute the third column. Obviously, one chooses the two least complicated
columns to compute.
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EXERCISES

3.1 [15] Compute the kinematics of the planar arm from Example 3.3.
3.2 [37] Imagine an arm like the PUMA 560, except that joint 3 is replaced with a pris-

matic joint. Assume the prismatic joint slides along the direction of X̂1 in Fig. 3.18;
however, there is still an offset equivalent to d3 to be accounted for. Make any
additional assumptions needed. Derive the kinematic equations.

3.3 [25] The arm with three degrees of freedom shown in Fig. 3.29 is like the one in
Example 3.3, except that joint 1’s axis is not parallel to the other two. Instead, there
is a twist of 90 degrees in magnitude between axes 1 and 2. Derive link parameters
and the kinematic equations for B

WT . Note that no l3 need be defined.
3.4 [22] The arm with three degrees of freedom shown in Fig. 3.30 has joints 1 and 2

perpendicular, and joints 2 and 3 parallel. As pictured, all joints are at their zero
location. Note that the positive sense of the joint angle is indicated. Assign link
frames {0} through {3} for this arm—that is, sketch the arm, showing the attach-
ment of the frames. Then derive the transformation matrices 0

1T , 1
2T , and 2

3T .
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L1

L2

θ1

θ2

θ3

FIGURE 3.29: The 3R nonplanar arm (Exercise 3.3).

L1

L2

L3 L4

XT

XS

YS

ZT

ZS

YT hT j

θ1

θ3

θ2

FIGURE 3.30: Two views of a 3R manipulator (Exercise 3.4).
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3.5 [26] Write a subroutine to compute the kinematics of the 3R nonplanar robotic
arm discussed in Exercise 3.3. Obtain the rotational transformation matrix of the
end effector to the base; and show the coordinates of the end effector w.r.t. the
base. Consider a computer programming language equivalent to C.
Count a sine or cosine evaluation as costing 5 multiply times. Count additions and
multiplications as costing 0.333 multiply times and assignment statements as 0.2
multiply times. How many multiply times do you need?

3.6 [20] Write a subroutine to compute the kinematics of the complete Yasukawa
Motoman L-3 arm shown in Fig. 3.22. Use the procedure heading (or equivalent
in C):

Procedure KIN(VAR jointvar: vec3; VAR wrelb: frames);

Count a sine or cosine evaluation as costing 5 multiply times. Count additions
as costing 0.333 multiply times and assignment statements as 0.2 multiply times.
Count a square-root computation as costing 4 multiply times. How many multiply
times do you need?

3.7 [22] Write a subroutine to compute the kinematics of the arm in Exercise 3.3. Use
the procedure heading (or equivalent in C)

Procedure KIN(VAR theta: vec3; VAR wrelb: frame);

Count a sine or cosine evaluation as costing 5 multiply times. Count additions
as costing 0.333 multiply times and assignment statements as 0.2 multiply times.
Count a square-root computation as costing 4 multiply times. How many multiply
times do you need?

3.8 [13] In Fig. 3.31, the location of the tool, W
TT , is not accurately known. Using

force control, the robot feels around with the tool tip until it inserts it into the

ZG

YG

XG

ZT

XT

YT

hS j

hG j

hW jhB j hT j

FIGURE 3.31: Determination of the tool frame (Exercise 3.8).
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socket (or Goal) at location S
GT . Once in this “calibration” configuration (in

which {G} and {T } are coincident), the position of the robot, B
WT , is figured out

by reading the joint angle sensors and computing the kinematics. Assuming B
ST

and S
GT are known, give the transform equation to compute the unknown tool

frame, W
TT .

3.9 [11] For the two-link manipulator shown in Fig. 3.32(a), the link-transformation
matrices, 0

1T and 1
2T , were constructed. Their product is

0
2T =

⎡
⎢⎣

cθ1cθ2 −cθ1sθ2 sθ1 l1cθ1
sθ1cθ2 −sθ1sθ2 −cθ1 l1sθ1

sθ2 cθ2 0 0
0 0 0 1

⎤
⎥⎦ .

The link-frame assignments used are indicated in Fig. 3.32(b). Note that frame {0}
is coincident with frame {1} when θ1 = 0. The length of the second link is l2. Find
an expression for the vector 0Ptip, which locates the tip of the arm relative to the
{0} frame.

3.10 [39] Find the end-effector’s position of the Yasukawa Motoman robot (see
Section 3.7) for the given joint angles θ = (30◦, 60◦, 30◦) and link lengths
L2 = 75 cm, L3 = 45 cm.

3.11 [17] Figure 3.33 shows the schematic of a wrist which has three intersecting axes
that are not orthogonal. Assign link frames to this wrist (as if it were a 3-DOF
manipulator), and give the link parameters.

3.12 [08] Can the DH convention always give a unique attachment of frames to the link
for a given manipulator?

3.13 [15] Show the attachment of link frames for the 5-DOF manipulator shown
schematically in Fig. 3.34.

3.14 [20] A three-link planar arm is shown in Fig. 3.6. Develop the forward kine-
matics model of the robot using a geometric approach, instead of the DH
formulation.

(a) (b)

Tip

L1

L2

Y2

X1, 0

Z1, 0
X2

FIGURE 3.32: Two-link arm with frame assignments (Exercise 3.9).
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θ6

θ5

θ4

φ

FIGURE 3.33: 3R nonorthogonal-axis robot (Exercise 3.11).

θ1

θ2

θ4

d3 θ5

FIGURE 3.34: Schematic of a 2RP2R manipulator (Exercise 3.13).
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3.15 [15] Show the attachment of link frames for the 3-DOF manipulator shown
schematically in Fig. 3.35.

3.16 [15] Assign link frames to the RPR planar robot shown in Fig. 3.36, and give the
linkage parameters.

3.17 [15] Show the attachment of link frames on the three-link robot shown in Fig. 3.37.
3.18 [15] Show the attachment of link frames on the three-link robot shown in Fig. 3.38.
3.19 [15] Show the attachment of link frames on the three-link robot shown in Fig. 3.39.
3.20 [15] Show the attachment of link frames on the three-link robot shown in Fig. 3.40.
3.21 [15] Show the attachment of link frames on the three-link robot shown in Fig. 3.41.

u1

u3

u2

d3

FIGURE 3.35: Schematic of a 3R manipulator (Exercise 3.15).

d3

u1

u2

L1

FIGURE 3.36: Schematic of an RRP manipulator (Exercise 3.16).
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θ1

θ2

d3

L1

L2

FIGURE 3.37: Three-link RRP manipulator (Exercise 3.17).

θ1

θ2

θ3

L2

L1

FIGURE 3.38: Three-link RRR manipulator (Exercise 3.18).

3.22 [18] Show the attachment of link frames on the P 3R robot shown in Fig. 3.42.
Given your frame assignments, what are the signs of d2, d3, and a2?

3.23 [15] Show the attachment of link frames on the gantry crane of Fig. 3.43, which
has four degrees of freedom (one of them is redundant).

3.24 [18] For the Yasukawa Motoman L-3 kinematics obtained in Section 3.7,
compare the computation time required to individually calculate the rij terms
of (3.17) versus obtaining column one via the cross product [r12 r22 r32]T

× [r13 r23 r33]T. Count a sine or cosine evaluation as costing 5 multiply times,
additions as costing 0.333 multiply times, and assignment statements as 0.2
multiply times.
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θ1

d3

L1

L2d2

FIGURE 3.39: Three-link RPP manipulator (Exercise 3.19).

u2

d1

L1 L2

u3

FIGURE 3.40: Three-link PRR manipulator (Exercise 3.20).

3.25 [32] A certain human leg has the following dimensions (in cm): femur length =
500, shank length = 400, ankle-to-heel distance = 100, and ankle-to-toe distance
= 185. For the leg shown in Fig. 3.44, the three joint angles, 
 = (θhip, θknee, θankle),
are zero when the leg is vertical.

a) Show the attachment of link frames on the leg.
b) Give values for the parameters, assuming the frame origins are coplanar.
c) Compute the stride length, i.e., the distance along the ground from toe

contact-point to heel contact-point, using the joint vectors 
toe-contact =
(−4.15◦, −38.3◦, −2.57◦) and 
heel-contact = (9.64◦, −19.9◦, 31.8◦) and
assuming that the heel contact-point, the ankle joint, and the toe contact-
point are collinear.

3.26 [35] Some 6R painting robots route tubing through a hollow upper arm to provide
a slim profile for easier access to complex part shapes. One such manipulator, the
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d1

d2

d3

FIGURE 3.41: Three-link PPP manipulator (Exercise 3.21).

FIGURE 3.42: Schematic of a P 3R manipulator (Exercise 3.22).

Motoman EPX2800, is depicted in Fig. 3.45. In contrast to the PUMA 560 (see
Figs. 3.18 and 3.19) its axes of joints 4, 5, and 6 do not all intersect at a common
point. The angle between joint axes 4 and 5 is 45 degrees, as is the angle between
joint axes 5 and 6. Show the attachment of link frames on the EPX2800 and give
values for the link parameters, including θ1 . . . 6 for the configuration shown, in
which all frame origins are coplanar. Let the origin of frame {6} be on the flange
at the manipulator’s end.
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FIGURE 3.43: Gantry crane (Exercise 3.23).

FIGURE 3.44: Toe contact and heel contact for a striding leg (Exercise 3.25).

3.27 [40] A PUMA 560 is grasping a pin-like tool as in Fig. 3.28, but the location of
the tool, W

TT , is not known. One can determine the tool offset (that is, 6px , 6py ,
and 6pz) without having access to a known fixed point, such as {S}, if there is at
least a fixed point of unknown coordinates. This is achieved by visually making the
tool point coincident with the fixed point twice, using different wrist orientations
each time. Write an equation for computing the tool offset, 6P , given two such
configurations.

3.28 [15] For the manipulator shown in Fig. 3.37, give the linkage parameters.
3.29 [15] For the manipulator shown in Fig. 3.38, give the linkage parameters.
3.30 [15] For the manipulator shown in Fig. 3.39, give the linkage parameters.
3.31 [15] For the manipulator shown in Fig 3.40, give the linkage parameters. Consider

the one DOF attached to the base joint (d1) as rotary (θ1) along the axis of link. To
enable the rotary motion, the cross-section of the link and joint can be considered
as circular.

PROGRAMMING EXERCISE (PART 3)

1. Write a subroutine to compute the kinematics of the planar 3R robot in
Example 3.3—that is, a routine with the joint angles’ values as input, and a frame
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A

98.7

P-POINT

1801550250330

145

C

E

F795.5

950

300

FIGURE 3.45: EPX2800 profile (Exercise 3.26).

(the wrist frame relative to the base frame) as output. Use the procedure heading
(or equivalent in C)

Procedure KIN(VAR theta: vec3; VAR wrelb: frame);

where “wrelb” is the wrist frame relative to the base frame, B
WT . The type “frame”

consists of a 2 × 2 rotation matrix and a 2 × 1 position vector. If desired, you may
represent the frame with a 3 × 3 homogeneous transform in which the third row is
[0 0 1]. (The manipulator data are l1 = l2 = 0.5 meters.)

2. Write a routine that calculates where the tool is, relative to the station frame. The
input to the routine is a vector of joint angles:

Procedure WHERE(VAR theta: vec3; VAR trels: frame);

Obviously, WHERE must make use of descriptions of the tool frame and the robot
base frame in order to compute the location of the tool relative to the station frame.
The values of W

TT and S
BT should be stored in global memory (or, as a second choice,

you may pass them as arguments in WHERE).
3. A tool frame and a station frame for a certain task are defined as follows by the

user:

W
TT = [x y θ ] = [0.1 0.2 30.0], and

B
ST = [x y θ ] = [−0.1 0.3 0.0].
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Calculate the position and orientation of the tool relative to the station frame for
the following three configurations (in units of degrees) of the arm:

[θ1 θ2 θ3] = [0.0 90.0 − 90.0],
[θ1 θ2 θ3] = [−23.6 − 30.3 48.0],
[θ1 θ2 θ3] = [130.0 40.0 12.0].

MATLAB EXERCISE 3

This exercise focuses on DH parameters and on the forward-pose (position and orienta-
tion) kinematics transformation for the planar 3-DOF, 3R robot (of Figures 3.6 and 3.7).
The following fixed-length parameters are given: L1 = 4, L2 = 3, and L3 = 2 (m).

a) Derive the DH parameters. You can check your results against Fig. 3.8.

b) Derive the neighboring homogeneous transformation matrices i−1
iT , i = 1, 2, 3.

These are functions of the joint-angle variables θi , i = 1, 2, 3. Also, derive the con-
stant 3

HT by inspection: The origin of {H } is in the center of the gripper fingers, and
the orientation of {H } is always the same as the orientation of {3}.

c) Use Symbolic MATLAB to derive the forward-pose kinematics solution 0
3T and

0
HT symbolically (as a function of θi). Abbreviate your answer, using si = sin (θi),
ci = cos (θi), and so on. Also, there is a (θ1 + θ2 + θ3) simplification, by using sum-
of-angle formulas, that is due to the parallel Zi axes. Calculate the forward-pose
kinematics results (both 0

3T and 0
HT ) via MATLAB for the following input cases:

i) 
 = {θ1 θ2 θ3}T = {0 0 0}T .
ii) 
 = {10

◦
20

◦
30

◦ }T .

iii) 
 = {90
◦

90
◦

90
◦ }T .

For all three cases, check your results by sketching the manipulator configuration
and deriving the forward-pose kinematics transformation by inspection. (Think of
the definition of 0

HT in terms of a rotation matrix and a position vector.) Include
frames {H }, {3}, and {0} in your sketches.

d) Check all your results by means of the Corke Robotics Toolbox for MATLAB®.
Try functions link(), robot(), and fkine().
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Inverse Manipulator Kinematics

4.1 INTRODUCTION
4.2 SOLVABILITY
4.3 THE NOTION OF MANIPULATOR SUBSPACE WHEN n < 6
4.4 ALGEBRAIC VS. GEOMETRIC
4.5 ALGEBRAIC SOLUTION BY REDUCTION TO POLYNOMIAL
4.6 PIEPER’S SOLUTION WHEN THREE AXES INTERSECT
4.7 EXAMPLES OF INVERSE MANIPULATOR KINEMATICS
4.8 THE STANDARD FRAMES
4.9 SOLVE-ING A MANIPULATOR
4.10 REPEATABILITY AND ACCURACY
4.11 COMPUTATIONAL CONSIDERATIONS

4.1 INTRODUCTION

In the previous chapter, we considered the problem of computing the position and
orientation of the tool relative to the user’s workstation when given the joint angles
of the manipulator. In this chapter, we will investigate the more difficult converse
problem: Given the desired position and orientation of the tool relative to the station,
how do we compute the set of joint angles which will achieve this desired result?
Whereas Chapter 3 focused on the direct kinematics of manipulators, here the focus
is on the inverse kinematics of manipulators.

Solving the problem of finding the required joint angles to place the tool frame,
{T }, relative to the station frame, {S}, is split into two parts. First, frame transforma-
tions are performed to find the wrist frame, {W }, relative to the base frame, {B}, then
the inverse kinematics are used to solve for the joint angles.

4.2 SOLVABILITY

The problem of solving the kinematic equations of a manipulator is a nonlinear one.
Given the numerical value of 0

NT , we attempt to find values of θ1, θ2, . . ., θn. Consider
the equations given in (3.14). In the case of the PUMA 560 manipulator, the precise
statement of our current problem is as follows: Given 0

6T as sixteen numeric values
(four of which are trivial), solve (3.14) for the six joint angles θ1 through θ6.

For the case of an arm with six degrees of freedom [like the one corresponding
to the equations in (3.14)], we have 12 equations and six unknowns. However, among
the 9 equations arising from the rotation-matrix portion of 0

6T , only 3 are indepen-
dent. These, added to the 3 equations from the position-vector portion of 0

6T , give

117
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6 equations with six unknowns. These equations are nonlinear, transcendental equa-
tions, which can be quite difficult to solve. The equations of (3.14) are those of a robot
that had very simple link parameters—many of the αi were 0 or ±90 degrees. Many
link offsets and lengths were zero. It is easy to imagine that, for the case of a gen-
eral mechanism with six degrees of freedom (with all link parameters nonzero) the
kinematic equations would be much more complex than those of (3.14). As with any
nonlinear set of equations, we must concern ourselves with the existence of solutions,
with multiple solutions, and with the method of solution.

Existence of Solutions

The question of whether any solution exists at all raises the question of the manip-
ulator’s workspace. Roughly speaking, workspace is that volume of space that the
end-effector of the manipulator can reach. For a solution to exist, the specified goal
point must lie within the workspace. Sometimes, it is useful to consider two defi-
nitions of workspace. Dextrous workspace is that volume of space that the robot
end-effector can reach with all orientations. That is, at each point in the dextrous
workspace, the end-effector can be arbitrarily oriented. The reachable workspace is
that volume of space that the robot can reach in at least one orientation. Clearly, the
dextrous workspace is a subset of the reachable workspace.

Consider the workspace of the two-link manipulator in Fig. 4.1. If l1 = l2, then
the reachable workspace consists of a disc of radius 2l1. The dextrous workspace con-
sists of only a single point, the origin. If l1 �= l2, then there is no dextrous workspace,
and the reachable workspace becomes a ring of outer radius l1 + l2 and inner radius
|l1 − l2|. Inside the reachable workspace, there are two possible orientations of the
end-effector. On the boundaries of the workspace, there is only one possible orien-
tation.

These considerations of workspace for the two-link manipulator have assumed
that all the joints can rotate 360 degrees. This is rarely true for actual mechanisms.
When joint limits are a subset of the full 360 degrees, then the workspace is obviously
correspondingly reduced, either in extent or in the number of possible orientations

L2

L1

FIGURE 4.1: Two-link manipulator with link lengths l1 and l2.
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attainable. For example, if the arm in Fig. 4.1 has full 360-degree motion for θ1, but
only 0 ≤ θ2 ≤ 180◦, then the reachable workspace has the same extent, but only one
orientation is attainable at each point.

When a manipulator has fewer than six degrees of freedom, it cannot attain
general goal positions and orientations in 3-space. Clearly, the planar manipulator in
Fig. 4.1 cannot reach out of the plane, so any goal point with a nonzero Z-coordinate
value can be quickly rejected as unreachable. In many realistic situations, manipula-
tors with four or five degrees of freedom are employed that operate out of a plane,
but that clearly cannot reach general goals. Each such manipulator must be studied
to understand its workspace. In general, the workspace of such a robot is a subset of a
subspace that can be associated with any particular robot. Given a general goal-frame
specification, an interesting problem arises in connection with manipulators having
fewer than six degrees of freedom: What is the nearest attainable goal frame?

Workspace also depends on the tool-frame transformation, because it is usually
the tool-tip that is discussed when we speak of reachable points in space. Generally,
the tool transformation is performed independently of the manipulator kinematics
and inverse kinematics, so we are often led to consider the workspace of the wrist
frame, {W }. For a given end-effector, a tool frame, {T }, is defined; given a goal frame,
{G}, the corresponding {W } frame is calculated, and then we ask: Does this desired
position and orientation of {W } lie in the workspace? In this way, the workspace with
which we must concern ourselves (in a computational sense) is different from the
one imagined by the user, who is concerned with the workspace of the end-effector
(the {T } frame).

If the desired position and orientation of the wrist frame is in the workspace,
then at least one solution exists.

Multiple Solutions

Another possible problem encountered in solving kinematic equations is that of
multiple solutions. A planar arm with three revolute joints has a large dextrous
workspace in the plane (given “good” link lengths and large joint ranges), because
any position in the interior of its workspace can be reached with any orientation.
Figure 4.2 shows a three-link planar arm with its end-effector at a certain position

FIGURE 4.2: Three-link manipulator. Dashed lines indicate a second solution.
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Obstacle

A

B

FIGURE 4.3: One of the two possible solutions to reach point B causes a collision.

and orientation. The dashed lines indicate a second possible configuration in which
the same end-effector position and orientation are achieved.

The fact that a manipulator has multiple solutions can cause problems, because
the system has to be able to choose one. The criteria upon which to base a decision
vary, but a very reasonable choice would be the closest solution. For example, if the
manipulator is at point A, as in Fig. 4.3, and we wish to move it to point B, a good
choice would be the solution that minimizes the amount that each joint is required
to move. Hence, in the absence of the obstacle, the upper dashed configuration in
Fig. 4.3 would be chosen. This suggests that one input argument to our kinematic
inverse procedure might be the present position of the manipulator. In this way, if
there is a choice, our algorithm can choose the solution closest in joint-space. How-
ever, the notion of “close” might be defined in several ways. For example, typical
robots could have three large links, followed by three smaller, orienting links near
the end-effector. In this case, weights might be applied in the calculation of which
solution is “closer” so the selection favors moving smaller joints rather than mov-
ing the large joints, when a choice exists. The presence of obstacles might force a
“farther” solution to be chosen in cases where the “closer” solution would cause
a collision—in general, then, we need to be able to calculate all the possible solu-
tions. Thus, in Fig. 4.3, the presence of the obstacle implies that the lower dashed
configuration is to be used to reach point B.

The number of solutions depends upon the number of joints in the manipulator
but is also a function of the link parameters (αi , ai , and di for a rotary joint manip-
ulator) and the allowable ranges of motion of the joints. For example, the PUMA
560 can reach certain goals with eight different solutions. Figure 4.4 shows four solu-
tions; all place the hand with the same position and orientation. For each solution
pictured, there is another solution in which the last three joints “flip” to an alternate
configuration according to the following formulas:

θ ′
4 = θ4 + 180◦,

θ ′
5 = −θ5, (4.1)

θ ′
6 = θ6 + 180◦.
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FIGURE 4.4: Four solutions of the PUMA 560.

So, in total, there can be eight solutions for a single goal. Because of limits on joint
ranges, some of these eight could be inaccessible.

In general, the more nonzero link parameters there are, the more ways there
will be to reach a certain goal. For example, consider a manipulator with six rotational
joints. Figure 4.5 shows how the maximum number of solutions is related to how
many of the link length parameters (the ai) are zero. The more that are nonzero,
the bigger is the maximum number of solutions. For a completely general rotary-
jointed manipulator with six degrees of freedom, there are up to sixteen solutions
possible [1, 6].

Method of Solution

Unlike linear equations, there are no general algorithms that may be employed to
solve a set of nonlinear equations. In considering methods of solution, it will be wise
to define what constitutes the “solution” of a given manipulator.

A manipulator will be considered solvable if the joint variables can be
determined by an algorithm that allows one to determine all the sets of joint
variables associated with a given position and orientation [2].
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ai

a1 5 a3 5 a5 5 0
a3 5 a5 5 0

a3 5 0
All ai Þ 0

Number of solutions

< 4
< 8

  < 16
  < 16

FIGURE 4.5: Number of solutions vs. nonzero ai .

The main point of this definition is that we require, in the case of multiple solu-
tions, that it be possible to calculate all solutions. Hence, we do not consider some
numerical iterative procedures as solving the manipulator—namely, those methods
not guaranteed to find all the solutions.

We will split all proposed manipulator solution strategies into two broad
classes: closed-form solutions and numerical solutions. Because of their iterative
nature, numerical solutions generally are much slower than the corresponding
closed-form solution; so much so, for most uses, we are not interested in the numer-
ical approach to solution of kinematics. Iterative numerical solution to kinematic
equations is a whole field of study in itself (see [6,11,12]), and is beyond the scope
of this text.

We will restrict our attention to closed-form solution methods. In this context,
“closed form” means a solution method based on analytic expressions or on the solu-
tion of a polynomial of degree 4 or less, such that noniterative calculations suffice to
arrive at a solution. Within the class of closed-form solutions, we distinguish two
methods of obtaining the solution: algebraic and geometric. These distinctions are
somewhat hazy; any geometric methods brought to bear are applied by means of
algebraic expressions, so the two methods are similar. The methods differ perhaps in
approach only.

A major recent result in kinematics is that, according to our definition of solv-
ability, all systems with revolute and prismatic joints having a total of six degrees
of freedom in a single series chain are solvable. However, this general solution is a
numerical one. Only in special cases can robots with six degrees of freedom be solved
analytically. These robots for which an analytic (or closed-form) solution exists are
characterized either by having several intersecting joint axes or by having many αi

equal to 0 or ±90 degrees. Calculating numerical solutions is generally time consum-
ing relative to evaluating analytic expressions; hence, it is considered very important
to design a manipulator so that a closed-form solution exists. Manipulator design-
ers discovered this very quickly, and now virtually all industrial manipulators are
designed sufficiently simply so a closed-form solution can be developed.

A sufficient condition that a manipulator with six revolute joints have a closed-
form solution is that three neighboring joint axes intersect at a point. Section 4.6
discusses this condition. Almost every manipulator with six degrees of freedom built
today has three intersecting axes. For example, axes 4, 5, and 6 of the PUMA 560
intersect.
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4.3 THE NOTION OF MANIPULATOR SUBSPACE WHEN n < 6

The set of reachable goal frames for a given manipulator constitutes its reachable
workspace. For a manipulator with n degrees of freedom (where n < 6), this reach-
able workspace can be thought of as a portion of an n-degree-of-freedom subspace.
In the same manner in which the workspace of a six-degree-of-freedom manipulator
is a subset of space, the workspace of a simpler manipulator is a subset of its sub-
space. For example, the subspace of the two-link robot of Fig. 4.1 is a plane, but the
workspace is a subset of this plane, namely a circle of radius l1 + l2 for the case that
l1 = l2.

One way to specify the subspace of an n-degree-of-freedom manipulator is to
give an expression for its wrist or tool frame as a function of n variables that locate
it. If we consider these n variables to be free, then, as they take on all possible values,
the subspace is generated.

EXAMPLE 4.1

Give a description of the subspace of B
WT for the three-link manipulator from

Chapter 3, Fig. 3.6.
The subspace of B

WT is given by

B
WT =

⎡
⎢⎢⎣

cφ −sφ 0.0 x

sφ cφ 0.0 y

0.0 0.0 1.0 0.0
0 0 0 1

⎤
⎥⎥⎦ , (4.2)

where x and y give the position of the wrist and φ describes the orientation of the
terminal link. As x, y, and φ are allowed to take on arbitrary values, the subspace
is generated. Any wrist frame that does not have the structure of (4.2) lies outside
the subspace (and therefore lies outside the workspace) of this manipulator. Link
lengths and joint limits restrict the workspace of the manipulator to be a subset of
this subspace.

X2

X1

Y2

Y1

Z2

Z1

FIGURE 4.6: A polar two-link manipulator.
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EXAMPLE 4.2

Give a description of the subspace of 0
2T for the polar manipulator with two degrees

of freedom shown in Fig. 4.6. We have

0P2ORG =
⎡
⎣

x

y

0

⎤
⎦ , (4.3)

where x and y can take any values. The orientation is restricted because the 0Ẑ2 axis
must point in a direction that depends on x and y. The 0Ŷ2 axis always points down,
and the 0X̂2 axis can be computed as the cross product 0Ŷ2 × 0Ẑ2. In terms of x and
y, we have

0Ẑ2 =

⎡
⎢⎢⎢⎣

x√
x2 + y2

y√
x2 + y2

0

⎤
⎥⎥⎥⎦ . (4.4)

The subspace can therefore be given as

0
2T =

⎡
⎢⎢⎢⎢⎢⎢⎣

y√
x2 + y2

0
x√

x2 + y2
x

−x√
x2 + y2

0
y√

x2 + y2
y

0 −1 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.5)

Usually, in defining a goal for a manipulator with n degrees of freedom, we use
n parameters to specify the goal. If, on the other hand, we give a specification of a
full six degrees of freedom, we will not (in general) be able to reach the goal with
an n < 6 manipulator. In this case, we might be interested instead in reaching a goal
that lies in the manipulator’s subspace, and is as “near” as possible to the original
desired goal.

Hence, when specifying general goals for a manipulator with fewer than six
degrees of freedom, one solution strategy is the following:

1. Given a general goal frame, S
GT , compute a modified goal frame, S

G′T , such
that S

G′T lies in the manipulator’s subspace and is as “near” to S
GT as possible.

A definition of “near” must be chosen.
2. Compute the inverse kinematics to find joint angles using S

G′T as the desired
goal. Note that a solution still might not be possible if the goal point is not in
the manipulator’s workspace.

It generally makes sense to position the tool-frame origin to the desired loca-
tion, then choose an attainable orientation that is near the desired orientation. As we
saw in Examples 4.1 and 4.2, computation of the subspace is dependent on manip-
ulator geometry. Each manipulator must be individually considered to arrive at a
method of making this computation.
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Section 4.7 gives an example of projecting a general goal into the subspace
of a manipulator with five degrees of freedom, in order to compute joint angles
that will result in the manipulator’s reaching the attainable frame nearest to the
desired one.

4.4 ALGEBRAIC VS. GEOMETRIC

As an introduction to solving kinematic equations, we will consider two different
approaches to the solution of a simple planar three-link manipulator.

Algebraic Solution

Consider the three-link planar manipulator introduced in Chapter 3. It is shown with
its link parameters in Fig. 4.7.

Following the method in Chapter 3, we can use the link parameters to easily
find the kinematic equations of this arm:

B
WT = 0

3T =

⎡
⎢⎢⎣

c123 −s123 0.0 l1c1 + l2c12
s123 c123 0.0 l1s1 + l2s12
0.0 0.0 1.0 0.0
0 0 0 1

⎤
⎥⎥⎦ . (4.6)

X0

X2

X1

Y1

Y0
Y2

Y3

X3

i αi 2 1

0 0 01

0 02

θi

θ1

L1

0 03 L2

θ2

θ3

diai 2 1

FIGURE 4.7: Three-link planar manipulator and its link parameters.
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To focus our discussion on inverse kinematics, we will assume that the necessary
transformations have been performed so the goal point is a specification of the wrist
frame relative to the base frame, that is, B

WT . Because we are working with a planar
manipulator, specification of these goal points can be accomplished most easily by
specifying three numbers: x, y, and φ, where φ is the orientation of link 3 in the
plane (relative to the +X̂ axis). Hence, rather than giving a general B

WT as a goal
specification, we will assume a transformation with the structure

B
WT =

⎡
⎢⎢⎣

cφ −sφ 0.0 x

sφ cφ 0.0 y

0.0 0.0 1.0 0.0
0 0 0 1

⎤
⎥⎥⎦ . (4.7)

All attainable goals must lie in the subspace implied by the structure of equa-
tion (4.7). By equating (4.6) and (4.7), we arrive at a set of four nonlinear equations
that must be solved for θ1, θ2, and θ3:

cφ = c123, (4.8)

sφ = s123, (4.9)

x = l1c1 + l2c12, and (4.10)

y = l1s1 + l2s12. (4.11)

We now begin our algebraic solution of equations (4.8) through (4.11). If we
square both (4.10) and (4.11) and add them, we obtain

x2 + y2 = l2
1 + l2

2 + 2l1l2c2, (4.12)

where we have made use of

c12 = c1c2 − s1s2,

s12 = c1s2 + s1c2. (4.13)

Solving (4.12) for c2, we obtain

c2 = x2 + y2 − l2
1 − l2

2

2l1l2
. (4.14)

In order for a solution to exist, the right-hand side of (4.14) must have a value
between −1 and 1. In the solution algorithm, this constraint would be checked at this
time to find out whether a solution exists. Physically, if this constraint is not satisfied,
then the goal point is too far away for the manipulator to reach.

Assuming the goal is in the workspace, we write an expression for s2 as

s2 = ±
√

1 − c2
2. (4.15)

Finally, we compute θ2, using the two-argument arctangent routine1:

θ2 = Atan2(s2, c2). (4.16)

1See Section 2.8.
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The choice of signs in (4.15) corresponds to the multiple solution in which we can
choose the “elbow-up” or the “elbow-down” solution. In determining θ2, we have
used one of the recurring methods for solving the type of kinematic relationships
that often arise; namely, to determine both the sine and cosine of the desired joint
angle, then apply the two-argument arctangent. This ensures that we have found all
solutions, and that the solved angle is in the proper quadrant.

Having found θ2, we can solve (4.10) and (4.11) for θ1. We write (4.10) and
(4.11) in the form

x = k1c1 − k2s1, (4.17)

y = k1s1 + k2c1, (4.18)

where

k1 = l1 + l2c2,

k2 = l2s2. (4.19)

In order to solve an equation of this form, we perform a change of variables. Actually,
we are changing the way in which we write the constants k1 and k2.

If
r = +

√
k2

1 + k2
2 (4.20)

and
γ = Atan2(k2, k1),

then

k1 = r cos γ, and

k2 = r sin γ. (4.21)

Equations (4.17) and (4.18) can now be written as

x

r
= cos γ cos θ1 − sin γ sin θ1, (4.22)

y

r
= cos γ sin θ1 + sin γ cos θ1, (4.23)

so

cos(γ + θ1) = x

r
, (4.24)

sin(γ + θ1) = y

r
. (4.25)

Using the two-argument arctangent, we get

γ + θ1 = Atan2
(y

r
,
x

r

)
= Atan2(y, x), (4.26)

and so
θ1 = Atan2(y, x) − Atan2(k2, k1). (4.27)
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Note that, when a choice of sign is made in the solution of θ2 above, it will cause
a sign change in k2, thus affecting θ1. The substitutions used, (4.20) and (4.21), consti-
tute a method of solution of a form appearing frequently in kinematics—namely, that
of (4.10) or (4.11). Note also that, if x = y = 0, then (4.27) becomes undefined—in
this case, θ1 is arbitrary.

Finally, from (4.8) and (4.9), we can solve for the sum of θ1 through θ3:

θ1 + θ2 + θ3 = Atan2(sφ, cφ) = φ. (4.28)

From this, we can solve for θ3, because we know the first two angles. It is typical with
manipulators that have two or more links moving in a plane that, in the course of
solution, expressions for sums of joint angles arise.

In summary, an algebraic approach to solving kinematic equations is basically
one of manipulating the given equations into a form for which a solution is known.
For many common geometries, several forms of transcendental equations com-
monly arise. We have encountered a couple of them in the preceding section. In
Appendix C, more are listed.

Geometric Solution

In a geometric approach to finding a manipulator’s solution, we try to decompose
the spatial geometry of the arm into several plane-geometry problems. For many
manipulators (particularly when the αi = 0 or ±90) this can be done quite easily.
Joint angles can then be solved for by using the tools of plane geometry [7]. For the
arm with three degrees of freedom shown in Fig. 4.7, because the arm is planar, we
can apply plane geometry directly to find a solution.

Figure 4.8 shows the triangle formed by l1, l2, and the line joining the origin of
frame {0} with the origin of frame {3}. The dashed lines represent the other possible
configuration of the triangle, which would lead to the same position of the frame {3}.
Considering the solid triangle, we can apply the “law of cosines” to solve for θ2:

x2 + y2 = l2
1 + l2

2 − 2l1l2 cos(180 + θ2). (4.29)

X0

Y0

L2

L1

x

β

ψ

y

FIGURE 4.8: Plane geometry associated with a three-link planar robot.
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Now, cos(180 + θ2) = − cos(θ2), so we have

c2 = x2 + y2 − l2
1 − l2

2

2l1l2
. (4.30)

In order for this triangle to exist, the distance to the goal point
√

x2 + y2 must be
less than or equal to the sum of the link lengths, l1 + l2. This condition would be
checked at this point in a computational algorithm to verify the existence of solutions.
This condition is not satisfied when the goal point is out of reach of the manipu-
lator. Assuming a solution exists, this equation is solved for that value of θ2 that
lies between 0 and −180 degrees, because only for these values does the triangle
in Fig. 4.8 exist. The other possible solution (the one indicated by the dashed-line
triangle) is found by symmetry to be θ ′

2 = −θ2.
To solve for θ1, we find expressions for angles ψ and β as indicated in Fig. 4.8.

First, β may be in any quadrant, depending on the signs of x and y. So, we must use
a two-argument arctangent:

β = Atan2(y, x). (4.31)

We again apply the law of cosines to find ψ :

cos ψ = x2 + y2 + l2
1 − l2

2

2l1
√

x2 + y2
. (4.32)

Here, the arccosine must be solved so that 0 ≤ ψ ≤ 180◦, in order that the geometry
which leads to (4.32) will be preserved. These considerations are typical when using
a geometric approach—we must apply the formulas we derive only over a range of
variables such that the geometry is preserved. Then, we have

θ1 = β ± ψ, (4.33)

where the plus sign is used if θ2 < 0, and the minus sign if θ2 > 0.
The three angles may be summed to compute the orientation of the last link:

θ1 + θ2 + θ3 = φ. (4.34)

This equation is solved for θ3 to complete our solution.

4.5 ALGEBRAIC SOLUTION BY REDUCTION TO POLYNOMIAL

Transcendental equations are often difficult to solve because, even when there is only
one variable (say, θ), it generally appears as sin θ and cos θ . Making the following
substitutions, however, yields an expression in terms of a single variable, u:

u = tan
θ

2
,

cos θ = 1 − u2

1 + u2 , (4.35)

sin θ = 2u

1 + u2 .
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This is a very important geometric substitution used often in solving kinematic equa-
tions. These substitutions convert transcendental equations into polynomial equa-
tions in u. Appendix A lists these, and other trigonometric identities.

EXAMPLE 4.3

Convert the transcendental equation

a cos θ + b sin θ = c (4.36)

into a polynomial in the tangent of the half angle, and solve for θ .
Substituting from (4.35) and multiplying through by 1 + u2, we have

a(1 − u2) + 2bu = c(1 + u2). (4.37)

Collecting powers of u yields

(a + c)u2 − 2bu + (c − a) = 0, (4.38)

which is solved by the quadratic formula:

u = b ± √
b2 + a2 − c2

a + c
. (4.39)

Hence,

θ = 2 tan−1

(
b ± √

b2 + a2 − c2

a + c

)
. (4.40)

Should the solution for u from (4.39) be complex, there is no real solution to the orig-
inal transcendental equation. Note that, if a + c = 0, the argument of the arctangent
becomes infinity, and hence θ = 180◦. In a computer implementation, this potential
division by zero should be checked for ahead of time. This situation results when
the quadratic term of (4.38) vanishes, so that the quadratic degenerates into a linear
equation (see also Appendix C for an alternate solution).

Polynomials up to degree four possess closed-form solutions [8, 9], so manipu-
lators sufficiently simple that they can be solved by algebraic equations of this degree
(or lower) are called closed-form-solvable manipulators.

4.6 PIEPER’S SOLUTION WHEN THREE AXES INTERSECT

As mentioned earlier, although a completely general robot with six degrees of free-
dom does not have a closed-form solution, certain important special cases can be
solved. Pieper [3, 4] studied manipulators with six degrees of freedom in which three
consecutive axes intersect at a point.2 In this section, we will outline the method he
developed for the case of all six joints revolute, with the last three axes intersect-
ing. His method applies to other configurations, which include prismatic joints, and
the interested reader should research further [4]. Pieper’s work is applicable to the
majority of commercially available industrial robots.

2Included in this family of manipulators are those with three consecutive parallel axes, because they
meet at the point at infinity.
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When the last three axes intersect, the origins of link frames {4}, {5}, and {6}
are all located at this point of intersection. This point is given in base coordinates as

0P4ORG = 0
1T

1
2T

2
3T

3P4ORG =

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦ , (4.41)

or, using the fourth column of (3.6) for i = 4, as

0P4ORG = 0
1T

1
2T

2
3T

⎡
⎢⎢⎣

a3
−d4sα3

d4cα3
1

⎤
⎥⎥⎦ , (4.42)

or as

0P4ORG = 0
1T

1
2T

⎡
⎢⎢⎣

f1(θ3)

f2(θ3)

f3(θ3)

1

⎤
⎥⎥⎦ , (4.43)

where ⎡
⎢⎢⎣

f1
f2
f3
1

⎤
⎥⎥⎦ = 2

3T

⎡
⎢⎢⎣

a3
−d4sα3

d4cα3
1

⎤
⎥⎥⎦ . (4.44)

Using (3.6) for 2
3T in (4.44) yields the following expressions for f1:

f1 = a3c3 + d4sα3s3 + a2,

f2 = a3cα2s3 − d4sα3cα2c3 − d4sα2cα3 − d3sα2, (4.45)

f3 = a3sα2s3 − d4sα3sα2c3 + d4cα2cα3 + d3cα2.

Using (3.6) for 0
1T and 1

2T in (4.43), we obtain

0P4ORG =

⎡
⎢⎢⎣

c1g1 − s1g2
s1g1 + c1g2

g3
1

⎤
⎥⎥⎦ , (4.46)

where

g1 = c2f1 − s2f2 + a1,

g2 = s2cα1f1 + c2cα1f2 − sα1f3 − d2sα1, (4.47)

g3 = s2sα1f1 + c2sα1f2 + cα1f3 + d2cα1.

We now write an expression for the squared magnitude of 0P4ORG, which we will
denote as r = x2 + y2 + z2, and which is seen from (4.46) to be

r = g2
1 + g2

2 + g2
3; (4.48)
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so, using (4.47) for the gi , we have

r = f 2
1 + f 2

2 + f 2
3 + a2

1 + d2
2 + 2d2f3 + 2a1(c2f1 − s2f2). (4.49)

We now write this equation, along with the Z-component equation from (4.46), as a
system of two equations in the form

r = (k1c2 + k2s2)2a1 + k3,

z = (k1s2 − k2c2)sα1 + k4, (4.50)

where

k1 = f1,

k2 = −f2,

k3 = f 2
1 + f 2

2 + f 2
3 + a2

1 + d2
2 + 2d2f3, and (4.51)

k4 = f3cα1 + d2cα1.

Equation (4.50) is useful because dependence on θ1 has been eliminated, and
because dependence on θ2 takes a simple form.

Now, let us consider the solution of (4.50) for θ3. We distinguish three cases:

1. If a1 = 0, then we have r = k3, where r is known. The right-hand side (k3) is a
function of θ3 only. After the substitution (4.35), a quadratic equation in tan θ3

2
may be solved for θ3.

2. If sα1 = 0, then we have z = k4, where z is known. Again, after substituting via
(4.35), a quadratic equation arises that can be solved for θ3.

3. Otherwise, eliminate s2 and c2 from (4.50) to obtain

(r − k3)
2

4a2
1

+ (z − k4)
2

s2α1
= k2

1 + k2
2 . (4.52)

This equation, after the (4.35) substitution for θ3, results in an equation of
degree 4, which can be solved for θ3.3

Having solved for θ3, we can solve (4.50) for θ2 and (4.46) for θ1.
To complete our solution, we need to solve for θ4, θ5, and θ6. These axes inter-

sect, so these joint angles affect the orientation of only the last link. We can compute
them from nothing more than the rotation portion of the specified goal, 0

6R. Hav-
ing obtained θ1, θ2, and θ3, we can compute 0

4R|θ4=0, by which notation we mean the
orientation of link frame {4} relative to the base frame when θ4 = 0. The desired ori-
entation of {6} differs from this orientation only by the action of the last three joints.
Because the problem was specified as given 0

6R, we can compute

4
6R|θ4=0 = 0

4R
−1|θ4=0

0
6R. (4.53)

3It is helpful to note that f 2
1 + f 2

2 + f 2
3 = a2

3 + d2
4 + d2

3 + a2
2 + 2d4d3cα3 + 2a2a3c3 + 2a2d4sα3s3.
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For many manipulators, these last three angles can be solved for by using
exactly the Z–Y–Z Euler angle solution given in Chapter 2, applied to 4

6R|θ4=0.
For any manipulator (with intersecting axes 4, 5, and 6), the last three joint angles
can be solved for as a set of appropriately defined Euler angles. There are always
two solutions for these last three joints, so the total number of solutions for the
manipulator will be twice the number found for the first three joints.

4.7 EXAMPLES OF INVERSE MANIPULATOR KINEMATICS

In this section, we will work out the inverse kinematics of two industrial robots.
One manipulator solution is done purely algebraically; the second solution is par-
tially algebraic, and partially geometric. The following solutions do not constitute
a cookbook method of solving manipulator kinematics, but they do show many of
the common manipulations likely to appear in most kinematic solutions. Note that
Pieper’s method of solution (covered in the preceding section) can be used for these
manipulators, but here, we choose to approach the solution a different way, to give
insight into various available methods.

The Unimation PUMA 560

As an example of the algebraic solution technique applied to a manipulator with six
degrees of freedom, we will solve the kinematic equations of the PUMA 560, which
were developed in Chapter 3. This solution is in the style of [5].

We wish to solve

0
6T =

⎡
⎢⎢⎣

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

⎤
⎥⎥⎦

= 0
1T (θ1)

1
2T (θ2)

2
3T (θ3)

3
4T (θ4)

4
5T (θ5)

5
6T (θ6) (4.54)

for θi when 0
6T is given as numeric values.

A restatement of (4.54) that puts the dependence on θ1 on the left-hand side
of the equation is

[0
1T (θ1)]−1 0

6T = 1
2T (θ2)

2
3T (θ3)

3
4T (θ4)

4
5T (θ5)

5
6T (θ6). (4.55)

Inverting 0
1T , we write (4.55) as

⎡
⎢⎢⎣

c1 s1 0 0
−s1 c1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

⎤
⎥⎥⎦ = 1

6T , (4.56)

where 1
6T is given by equation (3.13) developed in Chapter 3. This simple technique

of multiplying each side of a transform equation by an inverse is often used to advan-
tage in separating out variables in the search for a solvable equation.

Equating the (2, 4) elements from both sides of (4.56), we have

− s1px + c1py = d3. (4.57)
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To solve an equation of this form, we make the trigonometric substitutions

px = ρ cos φ, and

py = ρ sin φ, (4.58)

where

ρ =
√

p2
x + p2

y,

φ = Atan2(py, px). (4.59)

Substituting (4.58) into (4.57), we obtain

c1sφ − s1cφ = d3

ρ
. (4.60)

From the difference-of-angles formula,

sin(φ − θ1) = d3

ρ
. (4.61)

Hence,

cos(φ − θ1) = ±
√

1 − d2
3

ρ2 , (4.62)

and so

φ − θ1 = Atan2

⎛
⎝d3

ρ
,±

√
1 − d2

3

ρ2

⎞
⎠ . (4.63)

Finally, the solution for θ1 may be written as

θ1 = Atan2(py, px) − Atan2
(

d3,±
√

p2
x + p2

y − d2
3

)
. (4.64)

Note that we have found two possible solutions for θ1, corresponding to the plus-
or-minus sign in (4.64). Now that θ1 is known, the left-hand side of (4.56) is known.
If we equate both the (1,4) elements and the (3,4) elements from the two sides of
(4.56), we obtain

c1px + s1py = a3c23 − d4s23 + a2c2,

−px = a3s23 + d4c23 + a2s2. (4.65)

If we square equations (4.65) and (4.57) and add the resulting equations, we obtain

a3c3 − d4s3 = K, (4.66)

where

K = p2
x + p2

y + p2
x − a2

2 − a2
3 − d2

3 − d2
4

2a2
. (4.67)
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Note that dependence on θ1 has been removed from (4.66). Equation (4.66) is of
the same form as (4.57), and so can be solved by the same kind of trigonometric
substitution to yield a solution for θ3:

θ3 = Atan2(a3, d4) − Atan2(K,±
√

a2
3 + d2

4 − K2). (4.68)

The plus-or-minus sign in (4.68) leads to two different solutions for θ3. If we consider
(4.54) again, we can now rewrite it so that all the left-hand side is a function of only
knowns and θ2:

[0
3T (θ2)]−1 0

6T = 3
4T (θ4)

4
5T (θ5)

5
6T (θ6), (4.69)

or ⎡
⎢⎢⎣

c1c23 s1c23 −s23 −a2c3
−c1s23 −s1s23 −c23 a2s3
−s1 c1 0 −d3

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

⎤
⎥⎥⎦ = 3

6T , (4.70)

where 3
6T is given by equation (3.11) developed in Chapter 3. Equating both

the (1,4) elements and the (2,4) elements from the two sides of (4.70), we get

c1c23px + s1c23py − s23pz − a2c3 = a3,

−c1s23px − s1s23py − c23pz + a2s3 = d4. (4.71)

These equations can be solved simultaneously for s23 and c23, resulting in

s23 = (−a3 − a2c3)pz + (c1px + s1py)(a2s3 − d4)

p2
z + (c1px + s1py)2 ,

c23 = (a2s3 − d4)pz − (a3 + a2c3)(c1px + s1py)

p2
z + (c1px + s1py)2 . (4.72)

The denominators are equal and positive, so we solve for the sum of θ2 and θ3 as

θ23 = Atan2[(−a3 − a2c3)pz − (c1px + s1py)(d4 − a2s3),

(a2s3 − d4)pz − (a3 + a2c3)(c1px + s1py)]. (4.73)

Equation (4.73) computes four values of θ23, according to the four possible combina-
tions of solutions for θ1 and θ3; then, four possible solutions for θ2 are computed as

θ2 = θ23 − θ3, (4.74)

where the appropriate solution for θ3 is used when forming the difference.
Now, the entire left side of (4.70) is known. Equating both the (1,3) elements

and the (3,3) elements from the two sides of (4.70), we get

r13c1c23 + r23s1c23 − r33s23 = −c4s5,

−r13s1 + r23c1 = s4s5. (4.75)

As long as s5 �= 0, we can solve for θ4 as

θ4 = Atan2(−r13s1 + r23c1,−r13c1c23 − r23s1c23 + r33s23). (4.76)
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When θ5 = 0, the manipulator is in a singular configuration in which joint axes 4 and
6 line up and cause the same motion of the last link of the robot. In this case, all that
matters (and all that can be solved for) is the sum or difference of θ4 and θ6. This
situation is detected by checking whether both arguments of the Atan2 in (4.76) are
near zero. If so, θ4 is chosen arbitrarily,4 and when θ6 is computed later, it will be
computed accordingly.

If we consider (4.54) again, we can now rewrite it so all the left-hand side is a
function of only knowns and θ4, by rewriting it as

[0
4T (θ4)]−1 0

6T = 4
5T (θ5)

5
6T (θ6), (4.77)

where [0
4T (θ4)]−1 is given by

⎡
⎢⎢⎣

c1c23c4 + s1s4 s1c23c4 − c1s4 −s23c4 −a2c3c4 + d3s4 − a3c4
−c1c23s4 + s1c4 −s1c23s4 − c1c4 s23s4 a2c3s4 + d3c4 + a3s4

−c1s23 −s1s23 −c23 a2s3 − d4
0 0 0 1

⎤
⎥⎥⎦ , (4.78)

and 4
6T is given by equation (3.10) developed in Chapter 3. Equating both the (1,3)

elements and the (3,3) elements from the two sides of (4.77), we get

r13(c1c23c4 + s1s4) + r23(s1c23c4 − c1s4) − r33(s23c4) = −s5,

r13(−c1s23) + r23(−s1s23) + r33(−c23) = c5. (4.79)

Hence, we can solve for θ5 as

θ5 = Atan2(s5, c5), (4.80)

where s5 and c5 are given by (4.79).
Applying the same method one more time, we compute (0

5T )−1 and write
(4.54) in the form

(0
5T )−1 0

6T = 5
6T (θ6). (4.81)

Equating both the (3,1) elements and the (1,1) elements from the two sides of
(4.77) as we have done before, we get

θ6 = Atan2(s6, c6), (4.82)

where

s6 = −r11(c1c23s4 − s1c4) − r21(s1c23s4 + c1c4) + r31(s23s4),

c6 = r11[(c1c23c4 + s1s4)c5 − c1s23s5] + r21[(s1c23c4 − c1s4)c5 − s1s23s5]
−r31(s23c4c5 + c23s5).

Because of the plus-or-minus signs appearing in (4.64) and (4.68), these equations
compute four solutions. Additionally, there are four more solutions obtained by

4It is usually chosen to be equal to the present value of joint 4.
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“flipping” the wrist of the manipulator. For each of the four solutions computed
above, we obtain the flipped solution by

θ ′
4 = θ4 + 180◦,

θ ′
5 = −θ5, (4.83)

θ ′
6 = θ6 + 180◦.

After all eight solutions have been computed, some (or even all) of them might have
to be discarded because of joint-limit violations. Of any remaining valid solutions,
usually the one closest to the present manipulator configuration is chosen.

The Yasukawa Motoman L-3

As the second example, we will solve the kinematic equations of the Yasukawa
Motoman L-3, which were developed in Chapter 3. This solution will be partially
algebraic, and partially geometric. The Motoman L-3 has three features that make
the inverse kinematic problem quite different from that of the PUMA. First,
the manipulator has only five joints, so it is not able to position and orient its
end-effector in order to attain general goal frames. Second, the four-bar type of
linkages and chain-drive scheme cause one actuator to move two or more joints.
Third, the actuator position limits are not constants, but depend on the positions of
the other actuators, so finding out whether a computed set of actuator values is in
range is not trivial.

If we consider the nature of the subspace of the Motoman manipulator (and
the same applies to many manipulators with five degrees of freedom), we quickly
realize that this subspace can be described by giving one constraint on the attainable
orientation: The pointing direction of the tool, that is, the ẐT axis, must lie in the
“plane of the arm.” This plane is the vertical plane that contains the axis of joint 1
and the point where axes 4 and 5 intersect. The orientation nearest to a general ori-
entation is the one obtained by rotating the tool’s pointing direction so it lies in the
plane, using a minimum amount of rotation. Without developing an explicit expres-
sion for this subspace, we will construct a method for projecting a general goal frame
into it. Note that this entire discussion is for the case that the wrist frame and tool
frame differ only by a translation along Ẑw.

In Fig. 4.9, we indicate the plane of the arm by its normal, M̂ , and the desired
pointing direction of the tool by ẐT . This pointing direction must be rotated by angle
θ about some vector K̂ in order to cause the new pointing direction, Ẑ′

T , to lie in the
plane. It is clear that the K̂ that minimizes θ lies in the plane, and is orthogonal to
both ẐT and Ẑ′

T .
For any given goal frame, M̂ is defined as

M̂ = 1√
p2

x + p2
y

⎡
⎣

−py

px

0

⎤
⎦ , (4.84)

where px and py are the X and Y coordinates of the desired tool position. Then, K

is given by
K = M̂ × ẐT . (4.85)
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“Plane of the arm”
X1

θ

K

M

Z1

Z9T

ZT

FIGURE 4.9: Rotating a goal frame into the Motoman’s subspace.

The new Ẑ′
T is

Ẑ′
T = K̂ × M̂. (4.86)

The amount of rotation, θ , is given by

cos θ = ẐT · Ẑ′
T ,

sin θ = (ẐT × Ẑ′
T ) · K̂. (4.87)

Using Rodriques’s formula (see Exercise 2.20), we have

Ŷ ′
T = cθŶT + sθ(K̂ × ŶT ) + (1 − cθ)(K̂ · ŶT )K̂. (4.88)

Finally, we compute the remaining unknown column of the new rotation matrix of
the tool as

X̂′
T = Ŷ ′

T × Ẑ′
T . (4.89)

Equations (4.84) through (4.89) describe a method of projecting a given general goal
orientation into the subspace of the Motoman robot.

Assuming that the given wrist frame, B
WT , lies in the manipulator’s subspace,

we solve the kinematic equations as follows. In deriving the kinematic equations for
the Motoman L-3, we formed the product of link transformations:

0
5T = 0

1T
1
2T

2
3T

3
4T

4
5T . (4.90)

If we let

0
5T =

⎡
⎢⎢⎣

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

⎤
⎥⎥⎦ (4.91)

and premultiply both sides by 0
1T

−1, we have

0
1T

−1 0
5T = 1

2T
2
3T

3
4T

4
5T , (4.92)
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where the left-hand side is
⎡
⎢⎢⎣

c1r11 + s1r21 c1r12 + s1r22 c1r13 + s1r23 c1px + s1py

−r31 −r32 −r33 −pz

−s1r11 + c1r21 −s1r12 + c1r22 −s1r13 + c1r23 −s1px + c1py

0 0 0 1

⎤
⎥⎥⎦ (4.93)

and the right-hand side is ⎡
⎢⎢⎣

∗ ∗ s234 ∗
∗ ∗ −c234 ∗
s5 c5 0 0
0 0 0 1

⎤
⎥⎥⎦ ; (4.94)

in the latter, several of the elements have not been shown. Equating the (3,4)
elements, we get

− s1px + c1py = 0, (4.95)

which gives us5

θ1 = Atan2(py, px). (4.96)

Equating the (3,1) and (3,2) elements, we get

s5 = −s1r11 + c1r21,

c5 = −s1r12 + c1r22, (4.97)

from which we calculate θ5 as

θ5 = Atan2(r21c1 − r11s1, r22c1 − r12s1). (4.98)

Equating the (2,3) and (1,3) elements, we get

c234 = r33,

s234 = c1r13 + s1r23, (4.99)

which leads to
θ234 = Atan2(r13c1 + r23s1, r33). (4.100)

To solve for the individual angles θ2, θ3, and θ4, we will take a geometric approach.
Figure 4.10 shows the plane of the arm with point A at joint axis 2, point B at joint
axis 3, and point C at joint axis 4.

From the law of cosines applied to triangle ABC, we have

cos θ3 = p2
x + p2

y + p2
z − l2

2 − l2
3

2l2l3
. (4.101)

Next, we have6

θ3 = Atan2
(√

1 − cos2 θ3, cos θ3

)
. (4.102)

5For this manipulator, a second solution would violate joint limits, and so is not calculated.
6For this manipulator, a second solution would violate joint limits, and so is not calculated.
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B

A

pz

β

φ

θ3

L2

L3

C

2θ2 Ïp2
x
 1 p2

y

FIGURE 4.10: The plane of the Motoman manipulator.

From Fig. 4.10, we see that θ2 = −φ − β, or

θ2 = −Atan2
(
pz,

√
p2

x + p2
y

)
− Atan2(l3 sin θ3, l2 + l3 cos θ3). (4.103)

Finally, we have
θ4 = θ234 − θ2 − θ3. (4.104)

Having solved for joint angles, we must perform the further computation to obtain
the actuator values. Referring to Section 3.7, we solve equation (3.16) for the Ai :

A1 = 1
k1

(θ1 − λ1),

A2 = 1
k2

(√
−2α2β2 cos

(
θ2 − 
2 − tan−1

(
φ2

γ2

)
+ 270◦

)
+ α2

2 + β2
2 − λ2

)
,

A3 = 1
k3

(√
−2α3β3 cos

(
θ2 + θ3 − tan−1

(
φ3

γ3

)
+ 90◦

)
+ α2

3 + β2
3 − λ3

)
,

A4 = 1
k4

(180◦ + λ4 − θ2 − θ3 − θ4),

A5 = 1
k5

(λ5 − θ5). (4.105)

The actuators have limited ranges of motion, so we must check that our computed
solution is in range. This “in range” check is complicated by the fact that the mechan-
ical arrangement makes actuators interact and affect each other’s allowed range of
motion. For the Motoman robot, actuators 2 and 3 interact in such a way that the
following relationship must always be obeyed:

A2 − 10,000 > A3 > A2 + 3000. (4.106)
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That is, the limits of actuator 3 are a function of the position of actuator 2. Similarly,

32,000 − A4 < A5 < 55,000. (4.107)

Now, one revolution of joint 5 corresponds to 25,600 actuator counts, so, when A4 >

2600, there are two possible solutions for A5. This is the only situation in which the
Yasukawa Motoman L-3 has more than one solution.

4.8 THE STANDARD FRAMES

The ability to solve for joint angles is the central element in many robot control
systems. Again, consider the paradigm indicated in Fig. 4.11, which shows the
standard frames. The way these frames are used in a general robot system is as
follows:

1. The user specifies to the system where the station frame is to be located. This
might be at the corner of a work surface, as in Fig. 4.12, or even affixed to a
moving conveyor belt. The station frame, {S}, is defined relative to the base
frame, {B}.

2. The user specifies the description of the tool being used by the robot by giving
the {T }-frame specification. Each tool the robot picks up could have a different
{T } frame associated with it. Note that the same tool grasped in different ways
requires different {T }-frame definitions. {T } is specified relative to {W }—that
is, W

TT .
3. The user specifies the goal point for a robot motion by giving the description of

the goal frame, {G}, relative to the station frame. Often, the definitions of {T }
and {S} remain fixed for several motions of the robot. In this case, once they
are defined, the user simply gives a series of {G} specifications.

hB j
hW j

hS j hG j

hT j

FIGURE 4.11: Location of the “standard” frames.
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Goal
frame

Station
frame

Base frame

Wrist frame

Tool frame

Pin

Camera

FIGURE 4.12: Example workstation.

In many systems, the tool frame definition (W
TT ) is constant (for example, it is

defined with its origin at the center of the fingertips). Also, the station frame
might be fixed, or might easily be taught by the user with the robot itself. In such
systems, the user need not be aware of the five standard frames; he or she simply
thinks in terms of moving the tool to locations (goals) with respect to the work
area specified by station frame.

4. The robot system calculates a series of joint angles to move the joints through in
order that the tool frame will move from its initial location in a smooth manner
until {T } = {G} at the end of motion.

4.9 SOLVE-ING A MANIPULATOR

The SOLVE function implements Cartesian transformations and calls the inverse
kinematics function. Thus, the inverse kinematics are generalized so arbitrary tool-
frame and station-frame definitions may be used with our basic inverse kinematics,
which solves for the wrist frame relative to the base frame.

Given the goal-frame specification, S
T T , SOLVE uses the tool and station defi-

nitions to calculate the location of {W } relative to {B}, B
WT :

B
WT = B

ST
S
TT W

TT −1. (4.108)

Then, the inverse kinematics take B
WT as an input, and calculate θ1 through θn.
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4.10 REPEATABILITY AND ACCURACY

Many industrial robots today move to goal points that have been taught. A taught
point is one that the manipulator is moved to physically, then the joint position sen-
sors are read and the joint angles stored. When the robot is commanded to return
to that point in space, each joint is moved to the stored value. In simple “teach and
playback” manipulators such as these, the inverse kinematic problem never arises,
because goal points are never specified in Cartesian coordinates. When a manu-
facturer specifies how precisely a manipulator can return to a taught point, he is
specifying the repeatability of the manipulator.

Any time a goal position and orientation are specified in Cartesian terms, the
inverse kinematics of the device must be computed in order to solve for the required
joint angles. Systems that allow goals to be described in Cartesian terms are capable
of moving the manipulator to points that were never taught—points in its workspace
to which it has perhaps never gone before. We will call such points computed points.
Such a capability is necessary for many manipulation tasks. For example, if a com-
puter vision system is used to locate a part that the robot must grasp, the robot must
be able to move to the Cartesian coordinates supplied by the vision sensor. The pre-
cision with which a computed point can be attained is called the accuracy of the
manipulator.

The accuracy of a manipulator is bounded by the repeatability. Clearly, accu-
racy is affected by the precision of parameters appearing in the kinematic equations
of the robot. Errors in knowledge of the Denavit–Hartenberg parameters will cause
the inverse kinematic equations to calculate joint angle values that are in error.
Hence, although the repeatability of most industrial manipulators is quite good, the
accuracy is usually much worse, and varies quite a bit from manipulator to manipula-
tor. Calibration techniques can be devised that allow the accuracy of a manipulator to
be improved through estimation of that particular manipulator’s kinematic parame-
ters [10].

4.11 COMPUTATIONAL CONSIDERATIONS

In many path-control schemes, which we will consider in Chapter 7, it is necessary
to calculate the inverse kinematics of a manipulator at fairly high rates; for example,
30 Hz or faster. Therefore, computational efficiency is an issue. These speed require-
ments rule out the use of numerical-solution techniques that are iterative in nature;
for this reason, we have not considered them.

Most of the general comments from Section 3.10, made for forward kinematics,
also hold for the problem of inverse kinematics. For the inverse-kinematic case, a
table-lookup Atan2 routine is often used to attain higher speeds.

Structure of the computation of multiple solutions is also important. It is gener-
ally fairly efficient to generate all of them in parallel, rather than pursuing one after
another serially. Of course, in some applications, when all solutions are not required,
substantial time is saved by computing only one.

When a geometric approach is used to develop an inverse-kinematic solution,
it is sometimes possible to calculate multiple solutions by simple operations on the
various angles solved for while obtaining the first solution. That is, the first solution
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is moderately expensive computationally, but the other solutions are found very
quickly by summing and differencing angles, subtracting π , and so on.
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EXERCISES

4.1 [15] Sketch the fingertip workspace of the three-link manipulator of Chapter 3,
Exercise 3.3 for the case l1 = 0.2 m, l2 = 0.12 m, and l3 = 0.05 m.

4.2 [26] Derive the inverse kinematics of the three-link manipulator of Chapter 3,
Exercise 3.3.

4.3 [12] Sketch the fingertip workspace of the 3-DOF manipulator of Chapter 3,
Example 3.4.



“runall”
2021/5/22
page 145

�

�

�

�

�

�

�

�

Exercises 145

4.4 [24] Derive the inverse kinematics of the 3-DOF manipulator of Chapter 3,
Example 3.4.

4.5 [38] Write a Pascal (or C) subroutine that computes all possible solutions for the
PUMA 560 manipulator that lie within the following joint limits:

−170.0 < θ1 < 170.0,

−225.0 < θ2 < 45.0,

−250.0 < θ3 < 75.0,

−135.0 < θ4 < 135.0,

−100.0 < θ5 < 100.0,

−180.0 < θ6 < 180.0.

Use the equations derived in Section 4.7 with these numerical values (in meters):

a2 = 0.45,

a3 = 0.02,

d3 = 0.15,

d4 = 0.45.

4.6 [15] Describe a simple algorithm for choosing the nearest solution from a set of
possible solutions.

4.7 [10] Make a list of factors that might affect the repeatability of a manipulator.
Make a second list of additional factors that affect the accuracy of a manipulator.

4.8 [12] Given a desired position and orientation of the hand of a three-link planar
rotary-jointed manipulator, there are two possible solutions. If we add one more
rotational joint (in such a way that the arm is still planar), how many solutions
are there?

θ1

θ2

L1

L2

FIGURE 4.13: Two-link planar manipulator (Exercise 4.9).
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4.9 [26] Figure 4.13 shows a two-link planar arm with rotary joints. For this arm, the
second link is half as long as the first—that is, l1 = 2l2. The joint range limits in
degrees are

0 < θ1 < 180,

−90 < θ2 < 180.

Sketch the approximate reachable workspace (an area) of the tip of link 2.
4.10 [23] Give an expression for the subspace of the manipulator of Chapter 3,

Example 3.4.
4.11 [24] A 2-DOF positioning table is used to orient parts for arc-welding. The for-

ward kinematics that locate the bed of the table (link 2) with respect to the base
(link 0) are

0
2T =

⎡
⎢⎣

c1c2 −c1s2 s1 l2s1 + l1
s2 c2 0 0

−s1c2 s1s2 c1 l2c1 + h1
0 0 0 1

⎤
⎥⎦ .

Given any unit direction fixed in the frame of the bed (link 2), 2V̂ , give the inverse-
kinematic solution for θ1, θ2 such that this vector is aligned with 0Ẑ (i.e., upward).
Are there multiple solutions? Is there a singular condition for which a unique
solution cannot be obtained?

4.12 [22] In Fig. 4.14, two 3R mechanisms are pictured. In both cases, the three axes
intersect at a point (and, over all configurations, this point remains fixed in space).
The mechanism in Fig. 4.14(a) has link twists (αi) of magnitude 90 degrees.
The mechanism in Fig. 4.14(b) has one twist of φ in magnitude, and the other of
180 − φ in magnitude.

θ3

θ1

θ2

(a) (b)

θ3

θ2

θ2

φ

FIGURE 4.14: Two 3R mechanisms (Exercise 4.12).
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The mechanism in Fig. 4.14(a) can be seen to be in correspondence with Z–Y–Z
Euler angles, and therefore, we know that it suffices to orient link 3 (with arrow
in figure) arbitrarily with respect to the fixed link 0. Because φ is not equal to
90 degrees, it turns out that the other mechanism cannot orient link 3 arbitrarily.
Describe the set of orientations that are unattainable with the second mechanism.
Note that we assume all joints can turn 360 degrees (i.e. no limits), and we assume
that the links may pass through each other if need be (i.e., workspace not limited
by self-collisions).

4.13 [13] Consider a case of multiple DOF revolute joint manipulator in which, at a
particular situation, two of the z-axes coincide with both frames having only trans-
lation mapping. What will happen to the total DOF in this situation, and what is
the name of this situation?

4.14 [14] There exist 6-DOF robots for which the kinematics are NOT closed-form solv-
able. Does there exist any 3-DOF robot for which the (position) kinematics are
NOT closed-form solvable?

4.15 [38] Write a subroutine that solves quartic equations in closed form (see [8, 9]).
4.16 [25] A 4R manipulator is shown schematically in Fig. 4.15. The nonzero link

parameters are a1 = 1, α2 = 45◦, d3 = √
2, and a3 = √

2, and the mechanism is
pictured in the configuration corresponding to � = [0, 90◦,−90◦, 0]T. Each joint
has ±180◦ as limits. Find all the values of θ3 such that

0P4ORG = [1.12, 1.35, 1.2589]T.

4.17 [25] A 4R manipulator is shown schematically in Fig. 4.16. The nonzero link para-
meters are α1 = −90◦, d2 = 1, α2 = 45◦, d3 = 1, and a3 = 1, and the mechanism is
pictured in the configuration corresponding to � = [0, 0, 90◦, 0]T . Each joint has

1

X0,1 Y2

X3

Z3

Z4

Z2

P4

2

2

45

X4

Z0,1

FIGURE 4.15: A 4R manipulator shown in the position � = [0, 90◦,−90◦, 0]T
(Exercise 4.16 and 4.33).
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Z0,1

Y0,1

Y2

Z2

Z3

Z4

X4

X3

FIGURE 4.16: A 4R manipulator shown in the position � = [0, 0, 90◦, 0]T
(Exercise 4.17 and 4.34).

±180◦ as limits. Find all values of θ3 such that

0P4ORG = [0.0, 1.0, 1.414]T .

4.18 [15] Consider the RRP manipulator shown in Fig. 3.37. How many solutions do
the (position) kinematic equations possess?

4.19 [15] Consider the RRR manipulator shown in Fig. 3.38. How many solutions do
the (position) kinematic equations possess?

4.20 [15] Consider the RPP manipulator shown in Fig. 3.39. How many solutions do
the (position) kinematic equations possess?

4.21 [15] Consider the PRR manipulator shown in Fig. 3.40. How many solutions do
the (position) kinematic equations possess?

4.22 [15] Consider the PPP manipulator shown in Fig. 3.41. How many solutions do
the (position) kinematic equations possess?

4.23 [38] Examine a specific situation in the 3R wrist (Fig. 3.20) in which the estimation
of θ4 becomes undefined in programming. The inverse kinematic model is given as

θ4 = Atan2
(
ay, ax

)

θ5 = Atan2
(
C4ax + S4ay, az

)

θ6 = Atan2
(−S4nx + C4ny,−S4ox + C4oy

)

where

nx = C4C5C6 − S4S6

ny = S4C5C6 + C4S6

ox = −C4C5S6 − S4C6
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oy = −S4C5S6 + C4C6

ax = C4S5

ay = S4S5

az = C5

4.24 [20] Given the description of link frame {i} in terms of link frame {i − 1}, find the
four Denavit–Hartenberg parameters as functions of the elements of i−1

iT .
4.25 [18] The Denavit–Hartenburg parameters for the PUMA 560, shown in Fig. 3.21,

all have some associated uncertainty. For each of these four parameters (a, α, d,
and θ), state whether the associated uncertainty affects repeatability or accuracy.

4.26 [18] Imagine a 150-unit high step placed in front of the human-leg model of
Exercise 3.25. Determine the joint angles necessary to set the foot flat on this
step if the heel contact point will be 300 units in front of the hip joint.

4.27 [20] Revisit (4.17) and (4.18) to find θ1 by introducing the term h1 ≡ tan(θ1/2),
which leads to

s1 = 2h1

1 + h2
1

and

c1 = 1 − h2
1

1 + h2
1

.

4.28 [25] Describe the subspace of the 5-R manipulator shown in Fig. 4.17.
4.29 [25] For the RRR manipulator in Example 3.3, write code to generate a 2-D point

cloud of the fingertip workspace. Let points in the dexterous workspace be of a
different color than those that are merely reachable.

4.30 [22] Give a description of the subspace of 0
3T for the RPR mechanism in

Example 3.4.
4.31 [23] Consider the RPR manipulator shown in Fig. 3.36. How many solutions do

the (position and orientation) kinematic equations possess?

L1

L5

L6

x

z

y

θ3

θ2

θ1
θ4

θ5

L2

L3

L9

L4

FIGURE 4.17: 5-R Manipulator.
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4.32 [24] A 2-DOF positioning table is used to orient parts for arc-welding. The for-
ward kinematics that locate the bed of the table (link 2) with respect to the base
(link 0) are

0
2T =

⎡
⎢⎣

c1c2 −s1 c1s2 l2s1 + l1
s1c2 c1 s1s2 0
−s2 0 c2 l2c2 + h1

0 0 0 1

⎤
⎥⎦ .

Given any unit direction fixed in the frame of the bed (link 2), 2V̂ , give the inverse-
kinematic solution for θ1, θ2 such that this vector is aligned with 0Ŷ . Are there
multiple solutions? Is there a singular condition for which a unique solution cannot
be obtained?

4.33 [25] A 4R manipulator is shown schematically in Fig. 4.15. The nonzero link
parameters are a1 = 1, α2 = 45◦, d3 = √

2, and a3 = √
2, and the mechanism is

pictured in the configuration corresponding to � = [0, 90◦,−90◦, 0]T. Each joint
has ±180◦ as limits. Find all the values of θ3 such that

0P4ORG = [1.1, 0.8, 1.5]T.
4.34 [25] A 4R manipulator is shown schematically in Fig. 4.16. The nonzero link

parameters are α1 = −90◦, d2 = 1, α2 = 45◦, d3 = 1, and a3 = 1, and the
mechanism is pictured in the configuration corresponding to � = [0, 0, 90◦, 0]T.
Each joint has ±180◦ as limits. Find all the values of θ1, θ2, and θ3 such that

0P4ORG = [−1, 0, 1.414]T.

PROGRAMMING EXERCISE (PART 4)

1. Write a subroutine to calculate the inverse kinematics for the three-link manipula-
tor of Section 4.4. The routine should pass arguments in the form

Procedure INVKIN(VAR wrelb: frame; VAR current, near, far:

vec3; VAR sol: boolean);

where “wrelb,” an input, is the wrist frame specified relative to the base frame;
“current,” an input, is the current position of the robot (given as a vector of joint
angles); “near” is the nearest solution; “far” is the second solution; and “sol” is
a flag that indicates whether solutions were found. (sol = FALSE if no solutions
were found). The link lengths (meters) are

l1 = l2 = 0.5.

The joint ranges of motion are

−170◦ ≤ θi ≤ 170◦.

Test your routine by calling it back-to-back with KIN to demonstrate that they are
indeed inverses of one another.

2. A tool is attached to link 3 of the manipulator. This tool is described by W
TT , the

tool frame relative to the wrist frame. Also, a user has described his work area, the
station frame relative to the base of the robot, as B

ST . Write the subroutine

Procedure SOLVE(VAR trels: frame; VAR current, near, far:

vec3; VAR sol: boolean);
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where “trels” is the {T } frame specified relative to the {S} frame. Other parameters
are exactly as in the INVKIN subroutine. The definitions of {T } and {S} should be
globally defined variables or constants. SOLVE should use calls to TMULT, TINVERT,
and INVKIN.

3. Write a main program that accepts a goal frame specified in terms of x, y, and φ. This
goal specification is {T } relative to {S}, which is the way the user wants to specify
goals.
The robot is using the same tool in the same working area as in Programming
Exercise (Part 2), so {T } and {S} are defined as

W
TT = [x y θ ] = [0.1 0.2 30.0],
B
ST = [x y θ ] = [−0.1 0.3 0.0].

Calculate the joint angles for each of the following three goal frames:

[x1 y1 φ1] = [0.0 0.0 − 90.0],
[x2 y2 φ2] = [0.6 − 0.3 45.0],
[x3 y3 φ3] = [−0.4 0.3 120.0],
[x4 y4 φ4] = [0.8 1.4 30.0].

Assume that the robot will start with all angles equal to 0.0, and move to these
three goals in sequence. The program should find the nearest solution with respect
to the previous goal point. You should call SOLVE and WHERE back-to-back to make
sure they are truly inverse functions.

MATLAB EXERCISE 4

This exercise focuses on the inverse-pose kinematics solution for the planar 3-DOF,
3R robot (see Figures 3.6 and 3.7; the DH parameters are given in Figure 3.8). The
following fixed-length parameters are given: L1 = 4, L2 = 3, and L3 = 2(m).

a) Analytically derive, by hand, the inverse-pose solution for this robot: Given 0
HT ,

calculate all possible multiple solutions for {θ1 θ2 θ3}. (Three methods are pre-
sented in the text—choose one of these.) Hint: To simplify the equations, first cal-
culate 0

3T from 0
HT and L3.

b) Develop a MATLAB program to solve this planar 3R robot inverse-pose kinemat-
ics problem completely (i.e., to give all multiple solutions). Test your program, using
the following input cases:

i) 0
HT =

⎡
⎢⎣

1 0 0 9
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦.

ii) 0
HT =

⎡
⎢⎣

0.5 −0.866 0 7.5373
0.866 0.6 0 3.9266

0 0 1 0
0 0 0 1

⎤
⎥⎦.



“runall”
2021/5/22
page 152

�

�

�

�

�

�

�

�

152 Chapter 4 Inverse Manipulator Kinematics

iii) 0
HT =

⎡
⎢⎣

0 1 0 −3
−1 0 0 2

0 0 1 0
0 0 0 1

⎤
⎥⎦.

iv) 0
HT =

⎡
⎢⎣

0.866 0.5 0 −3.1245
−0.5 0.866 0 9.1674

0 0 1 0
0 0 0 1

⎤
⎥⎦.

For all cases, employ a circular check to validate your results: Plug each resulting
set of joint angles (for each of the multiple solutions) back into the forward-pose
kinematics MATLAB program to demonstrate that you get the originally com-
manded 0

HT .

c) Check all results by means of the Corke Robotics Toolbox for MATLAB®. Try
function ikine().
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C H A P T E R 5

Jacobians: Velocities
and Static Forces

5.1 INTRODUCTION
5.2 NOTATION FOR TIME-VARYING POSITION AND ORIENTATION
5.3 LINEAR AND ROTATIONAL VELOCITY OF RIGID BODIES
5.4 MORE ON ANGULAR VELOCITY
5.5 MOTION OF THE LINKS OF A ROBOT
5.6 VELOCITY “PROPAGATION” FROM LINK TO LINK
5.7 JACOBIANS
5.8 SINGULARITIES
5.9 STATIC FORCES IN MANIPULATORS
5.10 JACOBIANS IN THE FORCE DOMAIN
5.11 CARTESIAN TRANSFORMATION OF VELOCITIES AND STATIC FORCES

5.1 INTRODUCTION

In this chapter, we will expand our consideration of robot manipulators beyond
static-positioning problems. We will examine the notions of linear and angular veloc-
ity of a rigid body, and use these concepts to analyze the motion of a manipulator.
We also will consider forces acting on a rigid body, then use these ideas to study the
application of static forces with manipulators.

It turns out that the study of both velocities and static forces leads to a matrix
entity called the Jacobian1 of the manipulator, which will be introduced in this
chapter.

The field of kinematics of mechanisms will not be treated in great depth here.
For the most part, the presentation is restricted to only those ideas which are funda-
mental to the particular problem of robotics. The interested reader is urged to study
further from any of several texts on mechanics [1–3].

5.2 NOTATION FOR TIME-VARYING POSITION AND ORIENTATION

Before investigating the description of the motion of a rigid body, we will briefly dis-
cuss some basics: the differentiation of vectors, the representation of angular velocity,
and notation.

1Mathematicians call it the “Jacobian matrix,” but roboticists usually shorten it to simply “Jacobian.”
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Differentiation of Position Vectors

As a basis for our consideration of velocities (and, in Chapter 6, of accelerations),
we need the following notation for the derivative of a vector:

BVQ = d

dt

BQ = lim
�t→0

BQ(t + �t) − BQ(t)

�t
. (5.1)

The velocity of a position vector can be thought of as the linear velocity of the point
in space represented by the position vector. From (5.1), we see that we are calculating
the derivative of Q relative to frame {B}. For example, if Q is not changing in time
relative to {B}, then the velocity calculated is zero—even if there is some other frame
in which Q is varying. Thus, it is important to indicate the frame in which the vector
is differentiated.

As with any vector, a velocity vector can be described in terms of any frame,
and this frame of reference is noted with a leading superscript. Hence, the velocity
vector calculated by (5.1), when expressed in terms of frame {A}, would be written as

A(BVQ) =
Ad

dt

BQ. (5.2)

So we see that, in the general case, a velocity vector is associated with a point in
space, but the numerical values describing the velocity of that point depend on two
frames: one with respect to which the differentiation was done, and one in which the
resulting velocity vector is expressed.

In (5.1), the calculated velocity is written in terms of the frame of differentia-
tion, so the result could be indicated with a leading B superscript, but, for simplicity,
when both superscripts are the same, we needn’t indicate the outer one; that is,
we write

B(BVQ) = BVQ. (5.3)

Finally, we can always remove the outer, leading superscript by explicitly includ-
ing the rotation matrix that accomplishes the change in reference frame (see
Section 2.10); that is, we write

A(BVQ) = A
BR BVQ. (5.4)

We will usually write expressions in the form of the right-hand side of (5.4) so the
symbols representing velocities will always mean the velocity in the frame of differ-
entiation, and will not have outer, leading superscripts.

Rather than considering a general point’s velocity relative to an arbitrary
frame, we will very often consider the velocity of the origin of a frame relative to
some understood universe reference frame. For this special case, we define a short-
hand notation,

υC = UVCORG, (5.5)

where the point in question is the origin of frame {C}, and the reference frame is
{U }. For example, we can use the notation υC to refer to the velocity of the origin of
frame {C}; then AυC is the velocity of the origin of frame {C} expressed in terms of
frame {A} (though differentiation was done relative to {U}).
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{U }

{C }

{T }

ZU

XU

YU

ˆ

ˆ

ˆ

FIGURE 5.1: Example of some frames in linear motion.

EXAMPLE 5.1

Figure 5.1 shows a fixed universe frame, {U}, a frame attached to a train traveling at
100 mph, {T }, and a frame attached to a car traveling at 30 mph, {C}. Both vehicles
are heading in the X̂ direction of {U}. The rotation matrices, U

TR and U
CR, are known

and constant.

What is
Ud

dt
UPCORG?

Ud

dt

UPCORG = UVCORG = υC = 30X̂.

What is C(UVTORG)?

C(UVTORG) = CυT = C
URυT = C

UR(100X̂) = U
CR−1 100X̂.

What is C(TVCORG)?

C(TVCORG) = C
TR TVCORG = −U

CR−1 U
TR 70X̂.

The Angular Velocity Vector

We now introduce an angular velocity vector, using the symbol �. Whereas linear
velocity describes an attribute of a point, angular velocity describes an attribute of
a body. We always attach a frame to the bodies we consider, so we can also think of
angular velocity as describing the rotational motion of a frame.

In Fig. 5.2, A�B describes the rotation of frame {B} relative to {A}. Physically,
at any instant, the direction of A�B indicates the instantaneous axis of rotation of {B}
relative to {A}, and the magnitude of A�B indicates the speed of rotation. Again, like
any vector, an angular velocity vector may be expressed in any coordinate system,
and so another leading superscript may be added; for example, C(A�B) is the angular
velocity of frame {B} relative to {A} expressed in terms of frame {C}.
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{A}
{B}

AVB

FIGURE 5.2: Frame {B} is rotating with angular velocity A�B relative to frame {A}.

Again, we introduce a simplified notation for an important special case. This is
simply the case in which there is an understood reference frame, so that it need not
be mentioned in the notation:

ωC = U�C. (5.6)

Here, ωC is the angular velocity of frame {C} relative to some understood reference
frame, {U }. For example, AωC is the angular velocity of frame {C} expressed in terms
of {A} (though the angular velocity is with respect to {U}).

5.3 LINEAR AND ROTATIONAL VELOCITY OF RIGID BODIES

In this section, we will investigate the description of motion of a rigid body, at least
as far as velocity is concerned. These ideas extend the notions of translations and
orientations described in Chapter 2 to the time-varying case. In Chapter 6, we will
further extend our study to considerations of acceleration.

As in Chapter 2, we attach a coordinate system to any body that we wish to
describe. Then, motion of rigid bodies can be equivalently studied as the motion of
frames relative to one another.

Linear Velocity

Consider a frame {B} attached to a rigid body. We wish to describe the motion of BQ

relative to frame {A}, as in Fig. 5.3. We may consider {A} to be fixed.
Frame {B} is located relative to {A}, as described by a position vector, APBORG,

and a rotation matrix, A
BR. For the moment, we will assume that the orientation, A

BR,
is not changing with time—that is, the motion of point Q relative to {A} is due to
APBORG or BQ changing in time.

Solving for the linear velocity of point Q in terms of {A} is quite simple. Just
express both components of the velocity in terms of {A}, and sum them:

AVQ = AVBORG + A
BR BVQ. (5.7)

Equation (5.7) is only for that case in which the relative orientation of {B} and {A}
remains constant.



“runall”
2021/5/6
page 157

�

�

�

�

�

�

�

�

Section 5.3 Linear and Rotational Velocity of Rigid Bodies 157

{A}

{B }

APBORG

BQ

FIGURE 5.3: Frame {B} is translating with velocity AVBORG relative to frame {A}.

Rotational Velocity

Now, let us consider two frames with coincident origins and with zero linear rela-
tive velocity; their origins will remain coincident for all time. One or both could be
attached to rigid bodies, but, for clarity, the rigid bodies are not shown in Fig. 5.4.

The orientation of frame {B} with respect to frame {A} is changing in time. As
indicated in Fig. 5.4, rotational velocity of {B} relative to {A} is described by a vector
called A�B . We also have indicated a vector BQ that locates a point fixed in {B}.
Now we consider the all-important question: How does a vector change with time as
viewed from {A} when it is fixed in {B} and the systems are rotating?

Let us consider that the vector Q is constant as viewed from frame {B}; that is,
BVQ = 0. (5.8)

Even though it is constant relative to {B}, it is clear that point Q will have a velocity
as seen from {A} that is due to the rotational velocity A�B . To solve for the velocity
of point Q, we will use an intuitive approach. Figure 5.5 shows two instants of time
as vector Q rotates around A�B . This is what an observer in {A} would observe.

{A}{B}
AVB

BQ

FIGURE 5.4: Vector BQ, fixed in frame {B}, is rotating with respect to frame {A} with
angular velocity A�B .
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AVB

VDt

Q (t 1 Dt)

uQusinθ

Q (t)

DQ

θ

FIGURE 5.5: The velocity of a point due to an angular velocity.

By examining Fig. 5.5, we can figure out both the direction and the magnitude
of the change in the vector as viewed from {A}. First, it is clear that the differential
change in AQ must be perpendicular to both A�B and AQ. Second, we see from
Fig. 5.5 that the magnitude of the differential change is

|�Q| = (|AQ| sin θ)(|A�B |�t). (5.9)

These conditions on magnitude and direction immediately suggest the vector cross-
product. Indeed, our conclusions about direction and magnitude are satisfied by the
computational form

AVQ = A�B × AQ. (5.10)

In the general case, the vector Q could also be changing with respect to frame {B},
so, adding this component, we have

AVQ = A(BVQ) + A�B × AQ. (5.11)

Using a rotation matrix to remove the dual-superscript, and noting that the descrip-
tion of AQ at any instant is A

BRBQ, we end with

AVQ = A
BR BVQ + A�B × A

BR BQ. (5.12)

Simultaneous Linear and Rotational Velocity

We can simply expand (5.12) to the case where origins are not coincident, by adding
on the linear velocity of the origin to (5.12) to derive the general formula for velocity
of a vector fixed in frame {B}, as seen from frame {A}:

AVQ = AVBORG + A
BR BVQ + A�B × A

BR BQ (5.13)



“runall”
2021/5/6
page 159

�

�

�

�

�

�

�

�

Section 5.4 More on Angular Velocity 159

Equation (5.13) is the final result for the derivative of a vector in a moving frame as
seen from a stationary frame.

5.4 MORE ON ANGULAR VELOCITY

In this section, we will take a deeper look at angular velocity and, in particular, at
the derivation of (5.10). Whereas the previous section took a geometric approach
toward showing the validity of (5.10), here we will take a mathematical approach.
This section may be skipped by the first-time reader.

A Property of the Derivative of an Orthonormal Matrix

We can derive an interesting relationship between the derivative of an orthonormal
matrix and a certain skew-symmetric matrix as follows. For any n × n orthonormal
matrix, R, we have

RRT = In, (5.14)

where In is the n × n identity matrix. Our interest, by the way, is in the case where
n = 3 and R is a proper orthonormal matrix, or rotation matrix. Differentiating (5.14)
yields

ṘRT + RṘT = 0n, (5.15)

where 0n is the n × n zero matrix. Eq. (5.15) may also be written as

ṘRT + (ṘRT )T = 0n. (5.16)

Defining
S = ṘRT , (5.17)

we have, from (5.16), that
S + ST = 0n. (5.18)

So, we see that S is a skew-symmetric matrix. Hence, a property relating the deriv-
ative of orthonormal matrices with skew-symmetric matrices exists, and can be
stated as

S = ṘR−1. (5.19)

Velocity of a Point Due to Rotating Reference Frame

Consider a fixed vector BP unchanging with respect to frame {B}. Its description in
another frame {A} is given as

AP = A
BR BP. (5.20)

If frame {B} is rotating (i.e., the derivative Ȧ
BR is nonzero), then AP will be changing

even though BP is constant; that is,

˙AP = Ȧ
BR BP, (5.21)

or, using our notation for velocity,

AVP = Ȧ
BR BP. (5.22)
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Now, rewrite (5.22) by substituting for BP , to obtain

AVP = Ȧ
BR A

BR−1 AP. (5.23)

Making use of our result (5.19) for orthonormal matrices, we have

AVP = A
BS AP, (5.24)

where we have adorned S with sub- and superscripts to indicate that it is the skew-
symmetric matrix associated with the particular rotation matrix A

BR. Because of its
appearance in (5.24), and for other reasons to be seen shortly, the skew-symmetric
matrix we have introduced is called the angular-velocity matrix.

Skew-Symmetric Matrices and the Vector Cross-Product

If we assign the elements in a skew-symmetric matrix S as

S =
⎡
⎣

0 −�z �y

�z 0 −�x

−�y �x 0

⎤
⎦ , (5.25)

and define the 3 × 1 column vector

� =
⎡
⎣

�x

�y

�z

⎤
⎦ , (5.26)

then it is easily verified that
SP = � × P, (5.27)

where P is any vector, and × is the vector cross-product.
The 3 × 1 vector �, which corresponds to the 3 × 3 angular-velocity matrix, is

called the angular-velocity vector and was already introduced in Section 5.2.
Hence, our relation (5.24) can be written

AVP = A�B × AP, (5.28)

where we have shown the notation for � indicating that it is the angular-velocity
vector specifying the motion of frame {B} with respect to frame {A}.

Gaining Physical Insight Concerning the Angular-Velocity Vector

Having concluded that there exists some vector � such that (5.28) is true, we now
wish to gain some insight as to its physical meaning. Derive � by direct differentiation
of a rotation matrix; that is,

Ṙ = lim
�t→0

R(t + �t) − R(t)

�t
. (5.29)

Now, write R(t + �t) as the composition of two matrices, namely,

R(t + �t) = RK(�θ)R(t), (5.30)
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where, over the interval �t , a small rotation of �θ has occurred about axis K̂ . Using
(5.30), write (5.29) as

Ṙ = lim
�t→0

(
RK(�θ) − I3

�t
R(t)

)
; (5.31)

that is,

Ṙ =
(

lim
�t→0

RK(�θ) − I3

�t

)
R(t). (5.32)

Now, from small angle substitutions in (2.80), we have

RK(�θ) =
⎡
⎣

1 −kz�θ ky�θ

kz�θ 1 −kx�θ

−ky�θ kx�θ 1

⎤
⎦ . (5.33)

So, (5.32) may be written as

Ṙ =

⎛
⎜⎜⎜⎜⎜⎜⎝

lim
�t→0

⎡
⎣

0 −kz�θ ky�θ

kz�θ 0 −kx�θ

−ky�θ kx�θ 0

⎤
⎦

�t

⎞
⎟⎟⎟⎟⎟⎟⎠

R(t). (5.34)

Finally, dividing the matrix through by �t and then taking the limit, we have

Ṙ =
⎡
⎣

0 −kzθ̇ ky θ̇

kzθ̇ 0 −kxθ̇

−kyθ̇ kx θ̇ 0

⎤
⎦R(t). (5.35)

Hence, we see that

ṘR−1 =
⎡
⎣

0 −�z �y

�z 0 −�x

−�y �x 0

⎤
⎦ , (5.36)

where

� =
⎡
⎣

�x

�y

�z

⎤
⎦ =

⎡
⎣

kxθ̇

ky θ̇

kzθ̇

⎤
⎦ = θ̇ K̂. (5.37)

The physical meaning of the angular-velocity vector � is that, at any instant, the
change in orientation of a rotating frame can be viewed as a rotation about some
axis K̂ . This instantaneous axis of rotation, taken as a unit vector and then scaled by
the speed of rotation about that axis (θ̇), yields the angular-velocity vector.

Other Representations of Angular Velocity

Other representations of angular velocity are possible; for example, imagine that the
angular velocity of a rotating body is available as rates of the set of Z–Y–Z Euler
angles:

�̇Z′Y ′Z′ =
⎡
⎣

α̇

β̇

γ̇

⎤
⎦ . (5.38)
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Given this style of description, or any other using one of the 24 angle sets, we would
like to derive the equivalent angular-velocity vector.

We have seen that

ṘRT =
⎡
⎣

0 −�z �y

�z 0 −�x

−�y �x 0

⎤
⎦ . (5.39)

From this matrix equation, one can extract three independent equations, namely,

�x = ṙ31r21 + ṙ32r22 + ṙ33r23,

�y = ṙ11r31 + ṙ12r32 + ṙ13r33, (5.40)

�z = ṙ21r11 + ṙ22r12 + ṙ23r13.

From (5.40) and a symbolic description of R in terms of an angle set, one can derive
the expressions that relate the angle-set velocities to the equivalent angular-velocity
vector. The resulting expressions can be cast in matrix form—for example, for
Z–Y–Z Euler angles,

� = EZ′Y ′Z′(�Z′Y ′Z′)�̇Z′Y ′Z′ . (5.41)

That is, E(·) is a Jacobian relating an angle-set velocity vector to the angular-velocity
vector, and is a function of the instantaneous values of the angle set. The form of
E(·) depends on the particular angle set for which it is developed hence, a subscript
is added to indicate which.

EXAMPLE 5.2

Construct the E matrix that relates Z–Y–Z Euler angles to the angular-velocity vec-
tor; that is, find EZ′Y ′Z′ in (5.41).

Using (2.72) and (5.40), and doing the required symbolic differentiations, yields

EZ′Y ′Z′ =
⎡
⎣

0 −sα cαsβ

0 cα sαsβ

1 0 cβ

⎤
⎦ . (5.42)

5.5 MOTION OF THE LINKS OF A ROBOT

In considering the motions of robot links, we will always use link frame {0} as our
reference frame. Hence, υi is the linear velocity of the origin of link frame {i}, and
ωi is the angular velocity of link frame {i}.

At any instant, each link of a robot in motion has some linear and angular
velocity. Figure 5.6 indicates these vectors for link i. In this case, it is indicated that
they are written in frame {i}.

5.6 VELOCITY “PROPAGATION” FROM LINK TO LINK

We now consider the problem of calculating the linear and angular velocities of the
links of a robot. A manipulator is a chain of bodies, each one capable of motion
relative to its neighbors. Because of this structure, we can compute the velocity of
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Xi

Yi
Zi

Axis i

Link i

ivi

ini

FIGURE 5.6: The velocity of link i is given by vectors υi and ωi , which may be written
in any frame, even frame {i}.
each link in order, starting from the base. The velocity of link i + 1 will be that of
link i, plus whatever new velocity components were added by joint i + 1.2

As indicated in Fig. 5.6, let us now think of each link of the mechanism as a
rigid body with linear and angular velocity vectors describing its motion. Further,
we will express these velocities with respect to the link frame itself, rather than with
respect to the base coordinate system. Figure 5.7 shows links i and i + 1, along with
their velocity vectors defined in the link frames.

Rotational velocities can be added when both ω vectors are written with respect
to the same frame. Therefore, the angular velocity of link i + 1 is the same as that of

Xi

iPi 1 1

Zi 1 1

Xi 1 1

Yi 1 1

i 1 1ni 1 1

i 1 1vi 1 1

Yi

Ziivi

ini

FIGURE 5.7: Velocity vectors of neighboring links.

2Remember that linear velocity is associated with a point, but angular velocity is associated with a
body. Hence, the term “velocity of a link” here means the linear velocity of the origin of the link frame
and the rotational velocity of the link.
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link i, plus a new component caused by rotational velocity at joint i + 1. This can be
written in terms of frame {i} as

iωi+1 = iωi + i
i+1R θ̇i+1

i+1Ẑi+1. (5.43)

Note that

θ̇i+1
i+1Ẑi+1 = i+1

⎡
⎣

0
0

θ̇i+1

⎤
⎦ . (5.44)

We have made use of the rotation matrix relating frames {i} and {i + 1} in order to
represent the added rotational component due to motion at the joint in frame {i}.
The rotation matrix rotates the axis of rotation of joint i + 1 into its description in
frame {i}, so that the two components of angular velocity can be added.

By premultiplying both sides of (5.43) by i+1
iR, we can find the description of

the angular velocity of link i + 1 with respect to frame {i + 1}:
i+1ωi+1 = i+1

iR
iωi + θ̇i+1

i+1Ẑi+1. (5.45)

The linear velocity of the origin of frame {i + 1} is the same as that of the origin
of frame {i}, plus a new component caused by rotational velocity of link i. This is
exactly the situation described by (5.13), with one term vanishing because iPi+1 is
constant in frame {i}. Therefore, we have

iυi+1 = iυi + iωi × iPi+1. (5.46)

Premultiplying both sides by i+1
iR, we compute

i+1υi+1 = i+1
iR(iυi + iωi × iPi+1). (5.47)

Equations (5.45) and (5.47) are perhaps the most important results of this chapter.
The corresponding relationships for the case that joint i + 1 is prismatic are

i+1ωi+1 = i+1
iR

iωi,

i+1υi+1 = i+1
iR(iυi + iωi × iPi+1) + ḋi+1

i+1Ẑi+1. (5.48)

Applying these equations successively from link to link, we can compute NωN and
NυN , the rotational and linear velocities of the last link. Note that the resulting veloc-
ities are expressed in terms of frame {N}. This turns out to be useful, as we will see
later. If the velocities are desired in terms of the base coordinate system, they can be
rotated into base coordinates by multiplication with 0

NR.

EXAMPLE 5.3

A two-link manipulator with rotational joints is shown in Fig. 5.8. Calculate the
velocity of the tip of the arm as a function of joint rates. Give the answer in two
forms—in terms of frame {3}, and also in terms of frame {0}.

Frame {3} has been attached at the end of the manipulator, as shown in Fig. 5.9,
and we wish to find the velocity of the origin of this frame expressed in frame {3}.
As a second part of the problem, we will express these velocities in frame {0} as
well. We will start by attaching frames to the links as we have done before (shown in
Fig. 5.9).
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{3}

L2
V3

L1

θ2
·

θ1
·

X

Y

FIGURE 5.8: A two-link manipulator.

θ2

θ1

X3

X2

X0

Y3

Y0

Y1

FIGURE 5.9: Frame assignments for the two-link manipulator.

We will use (5.45) and (5.47) to compute the velocity of the origin of each frame,
starting from the base frame {0}, which has zero velocity. Because (5.45) and (5.47)
will make use of the link transformations, we can compute them:

0
1T =

⎡
⎢⎢⎣

c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

1
2T =

⎡
⎢⎢⎣

c2 −s2 0 l1
s2 c2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , and (5.49)

2
3T =

⎡
⎢⎢⎣

1 0 0 l2
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .
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Note that these correspond to the manipulator of Example 3.3 with joint 3 perma-
nently fixed at zero degrees. The final transformation between frames {2} and {3}
need not be cast as a standard link transformation (though it might be helpful to do
so). Then, using (5.45) and (5.47) sequentially from link to link, we calculate

1ω1 =
⎡
⎣

0
0
θ̇1

⎤
⎦ , (5.50)

1υ1 =
⎡
⎣

0
0
0

⎤
⎦ , (5.51)

2ω2 =
⎡
⎣

0
0

θ̇1 + θ̇2

⎤
⎦ , (5.52)

2υ2 =
⎡
⎣

c2 s2 0
−s2 c2 0

0 0 1

⎤
⎦

⎡
⎣

0
l1θ̇1

0

⎤
⎦ =

⎡
⎣

l1s2θ̇1
l1c2θ̇1

0

⎤
⎦ , (5.53)

3ω3 = 2ω2, (5.54)

3υ3 =
⎡
⎣

l1s2θ̇1
l1c2θ̇1 + l2(θ̇1 + θ̇2)

0

⎤
⎦ . (5.55)

Equation (5.55) is the answer. Also, the rotational velocity of frame {3} is found in
(5.54).

To find these velocities with respect to the nonmoving base frame, we rotate
them with the rotation matrix 0

3R, which is

0
3R = 0

1R
1
2R

2
3R =

⎡
⎣

c12 −s12 0
s12 c12 0
0 0 1

⎤
⎦ . (5.56)

This rotation yields

0υ3 =
⎡
⎣

−l1s1θ̇1 − l2s12(θ̇1 + θ̇2)

l1c1θ̇1 + l2c12(θ̇1 + θ̇2)

0

⎤
⎦ . (5.57)

It is important to point out the two distinct uses for (5.45) and (5.47). First, they
can be used as a means of deriving analytical expressions, as in Example 5.3. Here,
we manipulate the symbolic equations until we arrive at a form such as (5.55), which
will be evaluated with a computer application. Second, they can be used directly
to compute (5.45) and (5.47) as they are written. They can easily be written as a
subroutine, which is then applied iteratively to compute link velocities. As such, they
could be used for any manipulator, without the need of deriving the equations for a
particular manipulator. However, the computation then yields a numeric result with
the structure of the equations hidden. We are often interested in the structure of an
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analytic result such as (5.55). Also, if we bother to do the work (that is, (5.50) through
(5.57)), we generally will find that there are fewer computations left for the computer
to perform in the final application.

5.7 JACOBIANS

The Jacobian is a multidimensional form of the derivative. Suppose, for example,
that we have six functions, each of which is a function of six independent variables:

y1 = f1(x1, x2, x3, x4, x5, x6),

y2 = f2(x1, x2, x3, x4, x5, x6),

... (5.58)

y6 = f6(x1, x2, x3, x4, x5, x6).

We could also use vector notation to write these equations:

Y = F(X). (5.59)

Now, if we wish to calculate the differentials of yi as a function of differentials of xj ,
we simply use the chain rule, and we get

δy1 = ∂f1

∂x1
δx1 + ∂f1

∂x2
δx2 + · · · + ∂f1

∂x6
δx6,

δy2 = ∂f2

∂x1
δx1 + ∂f2

∂x2
δx2 + · · · + ∂f2

∂x6
δx6,

... (5.60)

δy6 = ∂f6

∂x1
δx1 + ∂f6

∂x2
δx2 + · · · + ∂f6

∂x6
δx6,

which again might be written more simply in vector notation:

δY = ∂F

∂X
δX. (5.61)

The 6 × 6 matrix of partial derivatives in (5.61) is what we call the Jacobian, J . Note
that, if the functions f1(X) through f6(X) are nonlinear, then the partial derivatives
are a function of the xi , so we can use the notation

δY = J (X)δX. (5.62)

By dividing both sides by the differential time element, we can think of the Jacobian
as mapping velocities in X to those in Y :

Ẏ = J (X)Ẋ. (5.63)

At any particular instant, X has a certain value, and J (X) is a linear transformation.
At each new time instant, X has changed, and therefore, so has the linear transfor-
mation. Jacobians are time-varying linear transformations.
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In the field of robotics, we generally use Jacobians that relate joint velocities to
Cartesian velocities of the tip of the arm—for example,

0ν = 0J (�)�̇, (5.64)

where � is the vector of joint angles of the manipulator, and ν is a vector of Cartesian
velocities. In (5.64), we have added a leading superscript to our Jacobian notation to
indicate in which frame the resulting Cartesian velocity is expressed. Sometimes, this
superscript is omitted when the frame is obvious, or when it is unimportant to the
development. Note that, for any given configuration of the manipulator, joint rates
are related to velocity of the tip in a linear fashion, yet this is only an instantaneous
relationship—in the next instant, the Jacobian has changed slightly. For the general
case of a six-jointed robot, the Jacobian is 6 × 6, �̇ is 6 × 1, and 0ν is 6 × 1. This 6 × 1
Cartesian velocity vector is the 3 × 1 linear velocity vector and the 3 × 1 rotational
velocity vector stacked together:

0ν =
[ 0υ

0ω

]
. (5.65)

Jacobians of any dimension (including nonsquare) can be defined. The number of
rows equals the number of degrees of freedom in the Cartesian space being consid-
ered. The number of columns in a Jacobian is equal to the number of joints of the
manipulator. In dealing with a planar arm, for example, there is no reason for the
Jacobian to have more than three rows, although, for redundant planar manipulators,
there could be arbitrarily many columns (one for each joint).

In the case of a two-link arm, we can write a 2 × 2 Jacobian that relates joint
rates to end-effector velocity. From the result of Example 5.3, we can easily deter-
mine the Jacobian of our two-link arm. The Jacobian written in frame {3} is seen
[from (5.55)] to be

3J (�) =
[

l1s2 0
l1c2 + l2 l2

]
, (5.66)

and the Jacobian written in frame {0} is [from (5.57)]

0J (�) =
[ −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

]
. (5.67)

Note that, in both cases, we have chosen to write a square matrix that relates joint
rates to end-effector velocity. We could also consider a 3 × 2 Jacobian that would
include the angular velocity of the end-effector.

Considering (5.58) through (5.62), which define the Jacobian, we see that the
Jacobian might also be found by directly differentiating the kinematic equations
of the mechanism. This is straightforward for linear velocity, but there is no 3 × 1
orientation vector whose derivative is ω. Hence, we have introduced a method to
derive the Jacobian by using successive application of (5.45) and (5.47). There are
several other methods that can be used (see, for example, [4]), one of which will be
introduced shortly in Section 5.8. One reason for deriving Jacobians via the method
presented is that it helps prepare us for the material in Chapter 6, in which we will
find that similar techniques apply to calculating the dynamic equations of motion
of a manipulator.
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Changing a Jacobian’s Frame of Reference

Given a Jacobian written in frame {B}, that is,
[

Bυ
Bω

]
= Bν = BJ (�)�̇, (5.68)

we might be interested in giving an expression for the Jacobian in another frame, {A}.
First, note that a 6 × 1 Cartesian velocity vector given in {B} is described relative to
{A} by the transformation

[
Aυ
Aω

]
=

⎡
⎣

A
BR 0

0 A
BR

⎤
⎦

[
Bυ
Bω

]
. (5.69)

Hence, we can write

[
Aυ
Aω

]
=

⎡
⎣

A
BR 0

0 A
BR

⎤
⎦ BJ (�)�̇. (5.70)

Now, it is clear that changing the frame of reference of a Jacobian is accom-
plished by means of the following relationship:

AJ (�) =
⎡
⎣

A
BR 0

0 A
BR

⎤
⎦ BJ (�). (5.71)

5.8 SINGULARITIES

Given that we have a linear transformation relating joint velocity to Cartesian veloc-
ity, a reasonable question to ask is: Is this matrix invertible? That is, is it nonsingular?
If the matrix is nonsingular, then we can invert it to calculate joint rates from given
Cartesian velocities:

�̇ = J−1(�)ν. (5.72)

This is an important relationship. For example, say that we wish the hand of the robot
to move with a certain velocity vector in Cartesian space. Using (5.72), we could
calculate the necessary joint rates at each instant along the path. The real question
of invertibility is: Is the Jacobian invertible for all values of �? If not, where is it not
invertible?

Most manipulators have values of � where the Jacobian becomes singular.
Such locations are called singularities of the mechanism, or singularities for short.
All manipulators have singularities at the boundary of their workspace, and most
have loci of singularities inside their workspace. An in-depth study of the classifica-
tion of singularities is beyond the scope of this book—for more information, see [5].
For our purposes, and without giving rigorous definitions, we will class singularities
into two categories:

1. Workspace-boundary singularities occur when the manipulator is fully stretch-
ed out or folded back on itself in such a way that the end-effector is at or very
near the boundary of the workspace.
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2. Workspace-interior singularities occur away from the workspace boundary;
they generally are caused by a lining up of two or more joint axes.

When a manipulator is in a singular configuration, it has lost one or more
degrees of freedom (as viewed from Cartesian space). This means that there is some
direction (or subspace) in Cartesian space along which it is impossible to move the
hand of the robot, no matter what joint rates are selected. It is obvious that this
happens at the workspace boundary of robots.

EXAMPLE 5.4

Where are the singularities of the simple two-link arm of Example 5.3? What is the
physical explanation of the singularities? Are they workspace-boundary singularities
or workspace-interior singularities?

To find the singular points of a mechanism, we must examine the determinant
of its Jacobian. Where the determinant is equal to zero, the Jacobian has lost full rank
and is singular:

DET [J (�)] =
[

l1s2 0
l1c2 + l2 l2

]
= l1l2s2 = 0. (5.73)

Clearly, a singularity of the mechanism exists when θ2 is 0 or 180 degrees.
Physically, when θ2 = 0, the arm is stretched straight out. In this configuration,
motion of the end-effector is possible along only one Cartesian direction (the
one perpendicular to the arm). Therefore, the mechanism has lost one degree of
freedom. Likewise, when θ2 = 180◦, the arm is folded completely back on itself,
and motion of the hand again is possible only in one Cartesian direction instead of
two. We will class these singularities as workspace-boundary singularities, because
they exist at the edge of the manipulator’s workspace. Note that the Jacobian
written with respect to frame {0}, or any other frame, would have yielded the
same result.

The danger in applying (5.72) in a robot control system is that, at a singular
point, the inverse Jacobian blows up! This results in joint rates approaching infinity
as the singularity is approached.

EXAMPLE 5.5

Consider the two-link robot from Example 5.3 as it is moving its end-effector along
the X̂ axis at 1.0 m/s, as in Fig. 5.10. Show that joint rates are reasonable when far
from a singularity, but that, as a singularity is approached at θ2 = 0, joint rates tend
toward infinity.

We start by calculating the inverse of the Jacobian written in {0}:

0J−1(�) = 1
l1l2s2

[
l2c12 l2s12

−l1c1 − l2c12 −l1s1 − l2s12

]
. (5.74)
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X3

X0

Y3

Y0

V3

2θ2

θ1

FIGURE 5.10: A two-link manipulator moving its tip at a constant linear velocity.

Then, using Eq. (5.74) for a velocity of 1 m/s in the X̂ direction, we can calculate joint
rates as a function of manipulator configuration:

θ̇1 = c12

l1s2
, (5.75)

θ̇2 = − c1

l2s2
− c12

l1s2
.

Clearly, as the arm stretches out toward θ2 = 0, both joint rates go to infinity.

EXAMPLE 5.6

For the PUMA 560 manipulator, give two examples of singularities that can occur.
There is singularity when θ3 is near −90.0 degrees. Calculation of the exact

value of θ3 is left as an exercise (see Exercise 5.14). In this situation, links 2 and 3
are “stretched out,” just like the singular location of the two-link manipulator in
Example 5.3. This is classed as a workspace-boundary singularity.

Whenever θ5 = 0.0 degrees, the manipulator is in a singular configuration. In
this configuration, joint axes 4 and 6 line up—both of their actions would result in the
same end-effector motion, so it is as if a degree of freedom has been lost. Because this
can occur interior to the workspace envelope, we will class it as a workspace-interior
singularity.

5.9 STATIC FORCES IN MANIPULATORS

The chainlike nature of a manipulator leads us quite naturally to consider how forces
and moments “propagate” from one link to the next. Typically, the robot is pushing
on something in the environment with the chain’s free end (the end-effector) or is
perhaps supporting a load at the hand. We wish to solve for the joint torques that
must be acting to keep the system in static equilibrium.

In considering static forces in a manipulator, we first lock all the joints so that
the manipulator becomes a structure. We then consider each link in this structure,
and write a force-moment balance relationship in terms of the link frames. Finally, we
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compute what static torque must be acting about the joint axis in order for the manip-
ulator to be in static equilibrium. In this way, we solve for the set of joint torques
needed to support a static load acting at the end-effector.

In this section, we will not be considering the force on the links due to gravity
(that will be left until chapter 6). The static forces and torques we are considering
at the joints are those caused by a static force or torque (or both) acting on the last
link—for example, as when the manipulator has its end-effector in contact with the
environment.

We define special symbols for the force and torque exerted by a neighbor link:
fi = force exerted on link i by link i − 1,
ni = torque exerted on link i by link i − 1.
We will use our usual convention for assigning frames to links. Figure 5.11

shows the static forces and moments (excluding the gravity force) acting on link i.
Summing the forces and setting them equal to zero, we have

ifi − ifi+1 = 0. (5.76)

Summing torques about the origin of frame {i}, we have

ini − ini+1 − iPi+1 × ifi+1 = 0. (5.77)

If we start with a description of the force and moment applied by the robot end-
effector, we can then calculate the force and moment applied by each link, working
from the last link down to the base (link 0). To do this, we formulate the force-
moment expressions (5.76) and (5.77) such that they specify iterations from higher
numbered links to lower numbered links. The result can be written as

ifi = ifi+1, (5.78)
ini = ini+1 + iPi+1 × ifi+1. (5.79)

iPi 1 1 fi 1 1

ni 1 1

fi 

ni 

{i}

{i 1 1}

FIGURE 5.11: Static force-moment balance for a single link.
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X3Y3

3F

τ1

τ2

FIGURE 5.12: A two-link manipulator applying a force at its tip.

In order to write these equations in terms of only forces and moments defined within
their own link frames, we transform with the rotation matrix describing frame {i + 1}
relative to frame {i}. This leads to our most important result for static force “propa-
gation” from link to link:

ifi = i
i+1R

i+1fi+1, (5.80)

ini = i
i+1R

i+1ni+1 + iPi+1 × ifi . (5.81)

Finally, this important question arises: What torques are needed at the joints in order
to balance the reaction forces and moments acting on the links? All components of
the force and moment vectors are resisted by the structure of the mechanism itself,
except for the torque about the joint axis. Therefore, to find the joint torque required
to maintain the static equilibrium, the dot product of the joint-axis vector with the
moment vector acting on the link is computed:

τi = inT
i

iẐi . (5.82)

In the case that joint i is prismatic, we compute the joint actuator force as

τi = if T
i

iẐi . (5.83)

Note that we are using the symbol τ even for a linear joint force.
As a matter of convention, we generally define the positive direction of joint

torque as the direction which would tend to move the joint in the direction of increas-
ing joint angle.

Equations (5.80) through (5.83) give us a means to compute the joint torques
needed to apply any force or moment with the end-effector of a manipulator in the
static case.

EXAMPLE 5.7

The two-link manipulator of Example 5.3 is applying a force vector 3F with its end-
effector. (Consider this force to be acting at the origin of {3}.) Find the required joint
torques as a function of configuration and of the applied force (see Fig. 5.12).
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We apply Eqs. (5.80) through (5.82), starting from the last link and going
toward the base of the robot:

2f2 =
⎡
⎢⎣

fx

fy

0

⎤
⎥⎦ , (5.84)

2n2 = l2X̂2 ×
⎡
⎢⎣

fx

fy

0

⎤
⎥⎦ =

⎡
⎣

0
0

l2fy

⎤
⎦ , (5.85)

1f1 =
⎡
⎢⎣

c2 −s2 0

s2 c2 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

fx

fy

0

⎤
⎥⎦ =

⎡
⎢⎣

c2fx − s2fy

s2fx + c2fy

0

⎤
⎥⎦ , (5.86)

1n1 =
⎡
⎣

0
0

l2fy

⎤
⎦ + l1X̂1 × 1f1 =

⎡
⎣

0
0

l1s2fx + l1c2fy + l2fy

⎤
⎦ . (5.87)

Therefore, we have

τ1 = l1s2fx + (l2 + l1c2)fy, (5.88)

τ2 = l2fy. (5.89)

This relationship can be written as a matrix operator:

τ =
[

l1s2 l2 + l1c2

0 l2

] [
fx

fy

]
. (5.90)

It is not a coincidence that this matrix is the transpose of the Jacobian that we found
in (5.66)!

5.10 JACOBIANS IN THE FORCE DOMAIN

We have found joint torques that will exactly balance forces at the hand in the static
situation. When forces act on a mechanism, work (in the technical sense) is done
if the mechanism moves through a displacement. Work is defined as a force acting
through a distance and is a scalar with units of energy. The principle of virtual work
allows us to make certain statements about the static case by allowing the amount of
this displacement to go to an infinitesimal. Work has the units of energy, so it must be
the same measured in any set of generalized coordinates. Specifically, we can equate
the work done in Cartesian terms with the work done in joint-space terms. In the
multidimensional case, work is the dot product of a vector force or torque and a
vector displacement. Thus, we have

F · δχ = τ · δ�, (5.91)

where F is a 6 × 1 Cartesian force-moment vector acting at the end-effector, δχ is
a 6 × 1 infinitesimal Cartesian displacement of the end-effector, τ is a 6 × 1 vector
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of torques at the joints, and δ� is a 6 × 1 vector of infinitesimal joint displacements.
Expression (5.91) can also be written as

FT δχ = τT δ�. (5.92)

The definition of the Jacobian is

δχ = Jδ�, (5.93)

so we may write
FT J δ� = τT δ�, (5.94)

which must hold for all δ�; hence, we have

FT J = τT . (5.95)

Transposing both sides yields this result:

τ = J T F. (5.96)

Equation (5.96) verifies in general what we saw in the particular case of the two-link
manipulator in Example 5.6: The Jacobian transpose maps Cartesian forces acting at
the hand into equivalent joint torques. When the Jacobian is written with respect to
frame {0}, then force vectors written in {0} can be transformed, as is made clear by
the following notation:

τ = 0J T 0F. (5.97)

When the Jacobian loses full rank, there are certain directions in which the end-
effector cannot exert static forces even if desired. That is, in (5.97), if the Jacobian
is singular, F could be increased or decreased in certain directions (those defining
the null-space of the Jacobian [6]) without effect on the value calculated for τ . This
also means that, near singular configurations, mechanical advantage tends toward
infinity, such that, with small joint torques, large forces could be generated at the
end-effector.3 Thus, singularities manifest themselves in the force domain as well as
in the position domain.

Note that (5.97) is a very interesting relationship, in that it allows us to convert
a Cartesian quantity into a joint-space quantity without calculating any inverse kine-
matic functions. We will make use of this when we consider the problem of control
in later chapters.

5.11 CARTESIAN TRANSFORMATION OF VELOCITIES AND STATIC FORCES

We might wish to think in terms of 6 × 1 representations of general velocity of a
body:

ν =
[

υ

ω

]
. (5.98)

Likewise, we could consider 6 × 1 representations of general force vectors,
such as

F =
[

F

N

]
, (5.99)

3Consider a two-link planar manipulator nearly outstretched with the end-effector in contact with a
reaction surface. In this configuration, arbitrarily large forces could be exerted by “small” joint torques.
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where F is a 3 × 1 force vector, and N is a 3 × 1 moment vector. It is then natural to
think of 6 × 6 transformations that map these quantities from one frame to another.
This is exactly what we have already done in considering the propagation of veloci-
ties and forces from link to link. Here, we write (5.45) and (5.47) in matrix-operator
form to transform general velocity vectors in frame {A} to their description in
frame {B}.

The two frames involved here are rigidly connected, so θ̇i+1, appearing in (5.45),
is set to zero in deriving the relationship

[
BυB

BωB

]
=

[
B
AR −B

AR APBORG×
0 B

AR

] [
AυA

AωA

]
, (5.100)

where the cross product is understood to be the matrix operator

P× =
⎡
⎣

0 −pz py

pz 0 −px

−py px 0

⎤
⎦ . (5.101)

Now, (5.100) relates velocities in one frame to those in another, so the 6 × 6 operator
will be called a velocity transformation; we will use the symbol Tυ . In this case, it is
a velocity transformation that maps velocities in {A} into velocities in {B}, so we use
the following notation to express (5.100) compactly:

BνB = B
ATυ

AνA. (5.102)

We can invert (5.100) in order to compute the description of velocity in terms of {A},
given the quantities in {B}:

[
AυA

AωA

]
=

[
A
BR APBORG × A

BR

0 A
BR

] [
BυB

BωB

]
, (5.103)

or
AνA = A

BTυ
BνB. (5.104)

Note that these mappings of velocities from frame to frame depend on A
BT (or its

inverse), and so must be interpreted as instantaneous results, unless the relation-
ship between the two frames is static. Similarly, from (5.80) and (5.81), we write the
6 × 6 matrix that transforms general force vectors written in terms of {B} into their
description in frame {A}, namely,

[
AFA

ANA

]
=

[
A
BR 0

APBORG × A
BR A

BR

] [
BFB

BNB

]
, (5.105)

which may be written compactly as

AFA = A
BTf

BFB, (5.106)

where Tf is used to denote a force-moment transformation.
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Sensor

Sensor frame

Tool

ZW
ˆ

YW
ˆ

XW
ˆ

XT
ˆ ZT

ˆ

YT
ˆ

{W}

{T}

Wrist

FIGURE 5.13: Frames of interest with a force sensor.

Velocity and force transformations are similar to Jacobians in that they relate
velocities and forces in different coordinate systems.

EXAMPLE 5.8

Figure 5.13 shows an end-effector holding a tool. Located at the point where the end-
effector attaches to the manipulator is a force-sensing wrist. This is a device that can
measure the forces and torques applied to it.

Consider the output of this sensor to be a 6 × 1 vector, SF, composed of three
forces and three torques expressed in the sensor frame, {S}. Our real interest is in
knowing the forces and torques applied at the tip of the tool, TF. Find the 6 × 6
transformation that transforms the force-moment vector from {S} to the tool frame,
{T }. The transform relating {T } to {S}, S

T T , is known. (Note that {S} here is the sensor
frame, not the station frame.)

This is simply an application of (5.106). First, from S
T T , we calculate the inverse,

T
ST , which is composed of T

SR and TPSORG. Then, we apply (5.106) to obtain

TFT = T
STf

SFS, (5.107)

where

T
STf =

[
T
SR 0

TPSORG × T
SR

T
SR

]
. (5.108)
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EXERCISES

5.1 [10] Repeat Example 5.4, but using the Jacobian in (5.67) written in frame {0}. Are
the results the same as those of Example 5.3?

5.2 [25] Find the Jacobian of the manipulator with three degrees of freedom from
Exercise 3.3 of Chapter 3. Write it in terms of a frame {4} located at the tip of the
hand, and having the same orientation as frame {3}.

5.3 [35] Find the Jacobian of the manipulator with three degrees of freedom from
Exercise 3.3 of Chapter 3. Write it in terms of a frame {4} located at the tip of the
hand, and having the same orientation as frame {3}. Derive the Jacobian in three
different ways: velocity propagation from base to tip, static force propagation from
tip to base, and by direct differentiation of the kinematic equations.

5.4 [8] Prove that singularities in the force domain exist at the same configurations as
singularities in the position domain.

5.5 [39] Calculate the Jacobian of the PUMA 560 in frame {6}.
5.6 [47] Is it true that any mechanism with three revolute joints and nonzero link

lengths must have a locus of singular points interior to its workspace?
5.7 [7] Provide a schematic diagram of a 2-DOF RR planar manipulator. And, with

the help of the Jacobian matrix, prove that it will show boundary singularity.
5.8 [18] General mechanisms sometimes have certain configurations, called “isotropic

points,” where the columns of the Jacobian become orthogonal and of equal mag-
nitude [7]. For the two-link manipulator of Example 5.3, find out if any isotropic
points exist. Hint: Is there a requirement on l1 and l2?

5.9 [50] Find the conditions necessary for isotropic points to exist in a general manip-
ulator with six degrees of freedom (see Exercise 5.8).

5.10 [7] For the two-link manipulator of Example 5.3, give the transformation that
would map joint torques into a 2 × 1 force vector, 3F , at the hand.

5.11 [14] Given

A
BT =

⎡
⎢⎣

0.866 −0.500 0.000 10.0
0.500 0.866 0.000 0.0
0.000 0.000 1.000 5.0

0 0 0 1

⎤
⎥⎦ ,
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if the velocity vector at the origin of {A} is

Aν =

⎡
⎢⎢⎢⎢⎢⎣

0.0
2.0

−3.0
1.414
1.414
0.0

⎤
⎥⎥⎥⎥⎥⎦

,

find the 6 × 1 velocity vector with reference point the origin of {B}.
5.12 [15] For the three-link manipulator of Exercise 3.3, give a set of joint angles for

which the manipulator is at a workspace-boundary singularity, and another set of
angles for which the manipulator is at a workspace-interior singularity.

5.13 [9] A certain two-link manipulator has the following Jacobian:

0J (�) =
[ −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

]
.

Ignoring gravity, what are the joint torques required in order that the manipulator
will apply a static force vector 0F = 10X̂0?

5.14 [18] If the link parameter a3 of the PUMA 560 were zero, a workspace-boundary
singularity would occur when θ3 = −90.0◦. Give an expression for the value of θ3
where the singularity occurs, and show that, if a3 were zero, the result would be
θ3 = −90.0◦. Hint: In this configuration, a straight line passes through joint axes 2
and 3 and the point where axes 4, 5, and 6 intersect.

5.15 [24] Give the 3 × 3 Jacobian that calculates linear velocity of the tool tip from
the three joint rates for the manipulator of Example 3.4 in Chapter 3. Give the
Jacobian in frame {0}.

5.16 [20] A 3R manipulator has kinematics that correspond exactly to the set of
Z–Y–Z Euler angles (i.e., the forward kinematics are given by (2.72) with α = θ1,
β = θ2, and γ = θ3). Give the Jacobian relating joint velocities to the angular
velocity of the final link.

5.17 [31] Imagine that, for a general 6-DOF robot, we have available 0Ẑi and 0Piorg for
all i—that is, we know the values for the unit Z vectors of each link frame in terms
of the base frame, and we know the locations of the origins of all link frames in
terms of the base frame. Let us also say that we are interested in the velocity of
the tool point (fixed relative to link n) and that we also know 0Ptool . Now, for a
revolute joint, the velocity of the tool tip due to the velocity of joint i is given by

0υi = θ̇i
0Ẑi × (0Ptool − 0Piorg), (5.109)

and the angular velocity of link n due to the velocity of this joint is given by
0ωi = θ̇i

0Ẑi . (5.110)

The total linear and angular velocity of the tool is given by the sum of the 0υi

and 0ωi respectively. Give equations analogous to (5.109) and (5.110) for the case
of joint i prismatic, and write the 6 × 6 Jacobian matrix of an arbitrary 6-DOF
manipulator in terms of the Ẑi , Piorg , and Ptool .

5.18 [18] The kinematics of a 3R robot are given by

0
3T =

⎡
⎢⎢⎢⎣

c1c23 −c1s23 s1 l1c1 + l2c1c2

s1c23 −s1s23 −c1 l1s1 + l2s1c2

s23 c23 0 l2s2

0 0 0 1

⎤
⎥⎥⎥⎦ .
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Find 0J (�), which, when multiplied by the joint velocity vector, gives the linear
velocity of the origin of frame {3} relative to frame {0}.

5.19 [15] The position of the origin of link 2 for an RP manipulator is given by

0P2ORG =
⎡
⎢⎣

a1c1 − d2s1

a1s1 + d2c1

0

⎤
⎥⎦ .

Give the 2 × 2 Jacobian that relates the two joint rates to the linear velocity of the
origin of frame {2}. Give a value of � where the device is at a singularity.

5.20 [20] Explain what might be meant by the statement: “An n-DOF manipulator at a
singularity can be treated as a redundant manipulator in a space of dimensionality
n − 1.”

5.21 [18] Describe a workspace-interior singularity that exists for the PUMA 560 in
addition to the one introduced in Example 5.6. Hint: This configuration is, in a
way, similar to the one discussed in Exercise 5.14.

5.22 [22] Using the leg model of Exercise 3.25, determine the joint torques, τ , necessary
to counteract a 95 N force acting in the vertical direction at the toe-contact point
if � = [10.5◦,−44.0◦, 3.55◦].

5.23 [35] Show that A
BTf �= A

BT T
v .

5.24 [18] What are the dimensions of the Jacobian for the 4R manipulator shown in
Fig. 4.15?

5.25 [25] For the 2R manipulator in Example 5.3 with l1 = 500 mm, l2 = 400 mm, and
� = [30◦ 75◦], numerically estimate the Jacobian written in frame {0} by using
small joint perturbations. What are the units associated with this matrix? Compare
this to the value computed analytically in (5.57).

5.26 [25] Repeat Example 5.5, but using the Jacobian written in frame {3}. Are the
results the same as those of Example 5.5?

5.27 [22] Give the 2 × 2 Jacobian that calculates linear velocity for the tool tip from the
two joint rates for the manipulator of Example 4.2. List any singularities of this
RP manipulator.

5.28 [14] Given ⎡
⎢⎣

0.612 −0.5 0.612 1
0.354 0.866 0.354 3

−0.707 0 0.707 7
0 0 0 1

⎤
⎥⎦ ,

if the velocity vector at the origin of {A} is
⎡
⎢⎢⎢⎢⎢⎣

5
1
3

−0.9
0

0.5

⎤
⎥⎥⎥⎥⎥⎦

find the 6 × 1 velocity vector with reference point at the origin of {B}.
5.29 [9] A certain two-link manipulator has the following Jacobian:

0J (�) =
[ −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

]
.

Ignoring gravity, what are the joint torques required in order that the manipulator
will apply a static force vector 0F = 5X̂0 + 3Ŷ0?
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5.30 [24] Give the 3 × 3 Jacobian that calculates linear velocity of the tool tip from
the three joint rates for the manipulator of Example 3.4 in Chapter 3. Give the
Jacobian both in frame {0} and in frame {3}.

PROGRAMMING EXERCISE (PART 5)

1. Two frames, {A} and {B}, are not moving relative to one another—that is, A
BT is

constant. In the planar case, we define the velocity of frame {A} as

AνA =
⎡
⎢⎣

AẋA

AẏA

Aθ̇A

⎤
⎥⎦ .

Write a routine that, given A
BT and AνA, computes BνB . Hint: This is the planar

analog of (5.100). Use a procedure heading such as (or equivalent C):

Procedure Veltrans (VAR brela: frame; VAR vrela, vrelb:

vec3);

where “vrela” is the velocity relative to frame {A}, or AνA, and “vrelb” is the output
of the routine (the velocity relative to frame {B}), or BνB .

2. Determine the 3 × 3 Jacobian of the three-link planar manipulator (from Exam-
ple 3.3). In order to derive the Jacobian, you should use velocity-propagation anal-
ysis (as in Example 5.2) or static-force analysis (as in Example 5.6). Hand in your
work showing how you derived the Jacobian.
Write a routine to compute the Jacobian in frame {3}—that is, 3J (�)—as a function
of the joint angles. Note that frame {3} is the standard link frame with origin on the
axis of joint 3. Use a procedure heading such as (or equivalent C):

Procedure Jacobian (VAR theta: vec3; Var Jac: mat33);

The manipulator data are l2 = l2 = 0.5 meters.
3. A tool frame and a station frame are defined as follows by the user for a certain

task (units are meters and degrees):
W
TT = [x y θ ] = [0.1 0.2 30.0],
B
ST = [x y θ ] = [0.0 0.0 0.0].

At a certain instant, the tool tip is at the position
S
T T = [x y θ ] = [0.6 − 0.3 45.0].

At the same instant, the joint rates (in deg/sec) are measured to be

�̇ = [θ̇1 θ̇2 θ̇3] = [20.0 − 10.0 12.0].
Calculate the linear and angular velocity of the tool tip relative to its own frame,
that is, T νT . If there is more than one possible answer, calculate all possible answers.

MATLAB EXERCISE 5

This exercise focuses on the Jacobian matrix and determinant, simulated resolved-rate
control, and inverse statics for the planar 3-DOF, 3R robot (see Figures 3.6 and 3.7; the
DH parameters are given in Figure 3.8).

The resolved-rate control method [9] is based on the manipulator velocity equation
kẊ = kJ �̇, where kJ is the Jacobian matrix, �̇ is the vector of relative joint rates, kẊ is
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the vector of commanded Cartesian velocities (both translational and rotational), and k

is the frame of expression for the Jacobian matrix and Cartesian velocities. This figure
shows a block diagram for simulating the resolved-rate control algorithm:

Robot
XC

J21
QC QC QA

Resolved-Rate-Algorithm Block Diagram

As is seen in the figure, the resolved-rate algorithm calculates the required com-
manded joint rates �̇C to provide the commanded Cartesian velocities ẊC ; this diagram
must be calculated at every simulated time step. The Jacobian matrix changes with con-
figuration �A. For simulation purposes, assume that the commanded joint angles �C are
always identical to the actual joint angles achieved, �A (a result rarely true in the real
world). For the planar 3-DOF, 3R robot assigned, the velocity equations kẊ = kJ �̇ for
k = 0 are

0

⎧⎨
⎩

ẋ

ẏ

ωz

⎫⎬
⎭ = 0

⎡
⎢⎣

−L1s1 − L2s12 − L3s123 −L2s12 − L3s123 −L3s123

L1c1 + L2c12 + L3c123 L2c12 + L3c123 L3c123

1 1 1

⎤
⎥⎦

⎧⎪⎨
⎪⎩

θ̇1

θ̇2

θ̇3

⎫⎪⎬
⎪⎭

,

where s123 = sin(θ1 + θ2 + θ3), c123 = cos(θ1 + θ2 + θ3), and so on. Note that 0Ẋ gives
the Cartesian velocities of the origin of the hand frame (at the center of the grippers
in Fig. 3.6) with respect to the origin of the base frame {0}, expressed in {0} coordinates.

Now, most industrial robots cannot command �̇C directly, so we must first inte-
grate these commanded relative joint rates to commanded joint angles �C , which can be
commanded to the robot at every time step. In practice, the simplest possible integration
scheme works well, assuming a small control time step �t : �new = �old + �̇�t . In your
MATLAB resolved-rate simulation, assume that the commanded �new can be achieved
perfectly by the virtual robot. (Chapters 6 and 9 present dynamics and control material
for which we do not have to make this simplifying assumption.) Be sure to update the
Jacobian matrix with the new configuration �new before completing the resolved-rate
calculations for the next time step.

Develop a MATLAB program to calculate the Jacobian matrix and to simulate
resolved-rate control for the planar 3R robot. Given the robot lengths L1 = 4, L2 = 3,
and L3 = 2 (m); the initial joint angles � = {θ1 θ2 θ3}T = {10

◦
20

◦
30

◦ }T , and the
constant commanded Cartesian rates 0{Ẋ} = {ẋ ẏ ωz}T = {0.2 −0.3 −0.2}T (m/s, m/s,
rad/s), simulate for exactly 5 sec, using time steps of exactly dt = 0.1 sec. In the same
program loop, calculate the inverse-statics problem—that is, calculate the joint torques
T = {τ1 τ2 τ3}T (Nm), given the constant commanded Cartesian wrench 0{W } =
{fx fy mz}T = {1 2 3}T (N, N, Nm). Also, in the same loop, animate the robot to the
screen during each time step, so that you can watch the simulated motion to verify that
it is correct.
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a) For the specific numbers assigned, present five plots (each set on a separate graph):

1. the three active joint rates �̇ = {θ̇1 θ̇2 θ̇3}T vs. time;

2. the three active joint angles � = {θ1 θ2 θ3}T vs. time;

3. the three Cartesian components of 0
HT , X = {x y φ}T (rad is fine for φ so

that it will fit) vs. time;
4. the Jacobian matrix determinant |J | vs. time—comment on nearness to sin-

gularities during the simulated resolved-rate motion;
5. the three active joint torques T = {τ1 τ2 τ3}T vs. time.

Carefully label (by hand is fine!) each component on each plot; also, label the axes
with names and units.

b) Check your Jacobian matrix results for the initial and final joint-angle sets by means
of the Corke Robotics Toolbox for MATLAB®. Try function jacob0(). Caution:
The toolbox Jacobian functions are for motion of {3} with respect to {0}, not for
{H } with respect to {0}, as in the problem assignment. The preceding function gives
the Jacobian result in {0} coordinates; jacobn() would give results in {3} coordinates.
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C H A P T E R 6

Manipulator Dynamics

6.1 INTRODUCTION
6.2 ACCELERATION OF A RIGID BODY
6.3 MASS DISTRIBUTION
6.4 NEWTON’S EQUATION, EULER’S EQUATION
6.5 ITERATIVE NEWTON–EULER DYNAMIC FORMULATION
6.6 ITERATIVE VS. CLOSED FORM
6.7 AN EXAMPLE OF CLOSED-FORM DYNAMIC EQUATIONS
6.8 THE STRUCTURE OF A MANIPULATOR’S DYNAMIC EQUATIONS
6.9 LAGRANGIAN FORMULATION OF MANIPULATOR DYNAMICS
6.10 FORMULATING MANIPULATOR DYNAMICS IN CARTESIAN SPACE
6.11 INCLUSION OF NONRIGID BODY EFFECTS
6.12 DYNAMIC SIMULATION
6.13 COMPUTATIONAL CONSIDERATIONS

6.1 INTRODUCTION

Our study of manipulators so far has only focused on kinematic considerations.
We have studied static positions, static forces, and velocities; but we have never
considered the forces required to cause motion. In this chapter, we consider the
equations of motion for a manipulator—the way in which motion of the manipulator
arises from torques applied by the actuators, or from external forces applied to the
manipulator.

Dynamics of mechanisms is a field in which many books have been written.
Indeed, one can spend years studying the field. Obviously, we cannot cover the mate-
rial in the completeness it deserves. However, certain formulations of the dynamics
problem seem particularly well suited to application to manipulators. In particular,
methods which make use of the serial-chain nature of manipulators are natural can-
didates for our study.

There are two problems related to the dynamics of a manipulator that we wish
to solve. In the first problem, we are given a trajectory point, �, �̇, and �̈, and we
wish to find the required vector of joint torques, τ . This formulation of dynamics is
useful for the problem of controlling the manipulator (see Chapter 10). The second
problem is to calculate how the mechanism will move under application of a set of
joint torques. That is, given a torque vector, τ , calculate the resulting motion of the
manipulator, �, �̇, and �̈. This is useful for simulating the manipulator.

185
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6.2 ACCELERATION OF A RIGID BODY

We now extend our analysis of rigid-body motion to the case of accelerations. At any
instant, the linear and angular velocity vectors have derivatives that are called the
linear and angular accelerations, respectively. That is,

BV̇Q = d

dt

BVQ = lim
�t→o

BVQ(t + �t) − BVQ(t)

�t
, (6.1)

and
A�̇B = d

dt

A�B = lim
�t→o

A�B(t + �t) − A�B(t)

�t
. (6.2)

As with velocities, when the reference frame of the differentiation is understood to
be some universal reference frame, {U}, we will use the notation

v̇A = UV̇AORG (6.3)

and
ω̇A = U�̇A. (6.4)

Linear Acceleration

We start by restating (5.12), an important result which describes the velocity of a
vector BQ as seen from frame {A} when the origins are coincident:

AVQ = A
BR BVQ + A�B × A

BR BQ. (6.5)

The left-hand side of this equation describes how AQ is changing in time. So, because
origins are coincident, we could rewrite (6.5) as

d

dt
(A
BR BQ) = A

BR BVQ + A�B × A
BR BQ. (6.6)

This form of the equation will be useful when deriving the corresponding accelera-
tion equation.

By differentiating (6.5), we can derive expressions for the acceleration of BQ

as viewed from {A} when the origins of {A} and {B} coincide:

AV̇Q = d

dt
(A
BR BVQ) + A�̇B × A

BR BQ + A�B × d

dt
(A
BR BQ). (6.7)

Now, we apply (6.6) twice—once to the first term, and once to the last term. The right-
hand side of equation (6.7) becomes

A
BR BV̇Q + A�B × A

BR BVQ + A�̇B × A
BR BQ

+ A�B × (A
BR BVQ + A�B × A

BR BQ).
(6.8)

Combining two terms, we get

A
BR BV̇Q + 2A�B × A

BR BVQ + A�̇B × A
BR BQ + A�B × (A�B × A

BR BQ). (6.9)
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Finally, to generalize to the case in which the origins are not coincident, we add one
term which gives the linear acceleration of the origin of {B}, resulting in the final
general formula:

AV̇BORG + A
BR BV̇Q + 2A�B × A

BR BVQ + A�̇B × A
BR BQ (6.10)

+ A�B × (A�B × A
BR BQ).

A particular case that is worth pointing out is when BQ is constant, or

BVQ = BV̇Q = 0. (6.11)

In this case, (6.10) simplifies to

AV̇Q = AV̇BORG + A�B × (A�B × A
BR BQ) + A�̇B × A

BR BQ. (6.12)

We will use this result in calculating the linear acceleration of the links of a manipu-
lator with rotational joints. When a prismatic joint is present, the more general form
of (6.10) will be used.

Angular Acceleration

Consider the case in which {B} is rotating relative to {A} with A�B , and {C} is rotating
relative to {B} with B�C . To calculate A�C , we sum the vectors in frame {A}:

A�C = A�B + A
BR B�C. (6.13)

By differentiating, we obtain

A�̇C = A�̇B + d

dt
(A
BR B�C). (6.14)

Now, applying (6.6) to the last term of (6.14), we get

A�̇C = A�̇B + A
BR B�̇C + A�B × A

BR B�C. (6.15)

We will use this result to calculate the angular acceleration of the links of a
manipulator.

6.3 MASS DISTRIBUTION

In systems with a single degree of freedom, we often talk about the mass of a rigid
body. In the case of rotational motion about a single axis, the notion of the moment of
inertia is a familiar one. For a rigid body that is free to move in three dimensions, there
are infinitely many possible rotation axes. In the case of rotation about an arbitrary
axis, we need a complete way of characterizing the mass distribution of a rigid body.
Here, we introduce the inertia tensor, which, for our purposes, can be thought of as
a generalization of the scalar moment of inertia of an object.

We shall now define a set of quantities that give information about the distri-
bution of mass of a rigid body, relative to a reference frame. Figure 6.1 shows a rigid
body with an attached frame. Inertia tensors can be defined relative to any frame,
but we will always consider the case of an inertia tensor defined for a frame attached
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{A}

AP

dυ

Ẑ

X̂

Ŷ

FIGURE 6.1: The inertia tensor of an object describes the object’s mass distribution.
Here, the vector AP locates the differential volume element, dv.

to the rigid body. Where it is important, we will indicate, with a leading superscript,
the frame of reference of a given inertia tensor. The inertia tensor relative to frame
{A} is expressed in the matrix form as the 3 × 3 matrix

AI =
⎡
⎣

Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

⎤
⎦ , (6.16)

where the scalar elements are given by

Ixx =
∫∫∫

V

(y2 + z2)ρdv,

Iyy =
∫∫∫

V

(x2 + z2)ρdv,

Izz =
∫∫∫

V

(x2 + y2)ρdv, (6.17)

Ixy =
∫∫∫

V

xyρdv,

Ixz =
∫∫∫

V

xzρdv,

Iyz =
∫∫∫

V

yzρdv,

in which the rigid body is composed of differential volume elements, dv, containing
material of density ρ. Each volume element is located with a vector, AP = [xyz]T ,
as shown in Fig. 6.1.

The elements Ixx, Iyy , and Izz are called the mass moments of inertia. Note
that, in each case, we are integrating the mass elements, ρdv, times the squares of
the perpendicular distances from the corresponding axis. The elements with mixed
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indices are called the mass products of inertia. This set of six independent quantities
will, for a given body, depend on the position and orientation of the frame in which
they are defined. If we are free to choose the orientation of the reference frame, it is
possible to cause the products of inertia to be zero. The axes of the reference frame,
when so aligned, are called the principal axes, and the corresponding mass moments
are the principal moments of inertia.

EXAMPLE 6.1

Find the inertia tensor for the rectangular body of uniform density ρ with respect to
the coordinate system shown in Fig. 6.2.

First, we compute Ixx . Using volume element dv = dx dy dz, we get

Ixx =
∫ h

0

∫ l

0

∫ w

0
(y2 + z2)ρ dx dy dz

=
∫ h

0

∫ l

0
(y2 + z2)wρdy dz (6.18)

=
∫ h

0

(
l3

3
+ z2l

)
wρdz

=
(

hl3w

3
+ h3lw

3

)
ρ

= m

3
(l2 + h2),

where m is the total mass of the body. Permuting the terms, we can get Iyy and Izz by
inspection:

Iyy = m

3
(w2 + h2) (6.19)

and
Izz = m

3
(l2 + w2). (6.20)

{A}

l

h

w

X

Y

Z

FIGURE 6.2: A body of uniform density.
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We next compute Ixy :

Ixy =
∫ h

0

∫ l

0

∫ w

0
xyρ dx dy dz

=
∫ h

0

∫ l

0

w2

2
yρ dy dz (6.21)

=
∫ h

0

w2l2

4
ρdz

= m

4
wl.

Permuting the terms, we get
Ixz = m

4
hw (6.22)

and
Iyz = m

4
hl. (6.23)

Hence, the inertia tensor for this object is

AI =
⎡
⎢⎣

m
3 (l2 + h2) −m

4 wl −m
4 hw

−m
4 wl m

3 (w2 + h2) −m
4 hl

−m
4 hw −m

4 hl m
3 (l2 + w2)

⎤
⎥⎦ . (6.24)

As noted, the inertia tensor is a function of the location and orientation of
the reference frame. A well-known result, the parallel-axis theorem, is one way of
computing how the inertia tensor changes under translations of the reference coor-
dinate system. The parallel-axis theorem relates the inertia tensor in a frame with
origin at the center of mass, to the inertia tensor with respect to another reference
frame. Where {C} is located at the center of mass of the body, and {A} is an arbitrarily
translated frame, the theorem can be stated [1] as

AIzz = CIzz + m(x2
c + y2

c ),

AIxy = CIxy − mxcyc, (6.25)

where Pc = [xc, yc, zc]T locates the center of mass relative to {A}. The remaining
moments and products of inertia are computed from permutations of x,y, and z in
(6.25). The theorem may be stated in vector–matrix form as

AI = CI + m[P T
c PcI3 − PcP

T
c ], (6.26)

where I3 is the 3 × 3 identity matrix.

EXAMPLE 6.2

Find the inertia tensor for the same solid body described for Example 6.1, when it is
described in a coordinate system with origin at the body’s center of mass.
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We can apply the parallel-axis theorem, (6.25), where

⎡
⎣

xc

yc

zc

⎤
⎦ = 1

2

⎡
⎣

w

l

h

⎤
⎦ .

Next, we find

CIzz = m

12
(w2 + l2),

CIxy = 0. (6.27)

The other elements are found by symmetry. The resulting inertia tensor written in
the frame at the center of mass is

CI =
⎡
⎢⎣

m
12 (h2 + l2) 0 0

0 m
12 (w2 + h2) 0

0 0 m
12 (l2 + w2)

⎤
⎥⎦ . (6.28)

The result is diagonal, so frame {C} must represent the principal axes of this body.

Some additional facts about inertia tensors are as follows:

1. If two axes of the reference frame form a plane of symmetry for the mass dis-
tribution of the body, the products of inertia, having as an index the coordinate
that is normal to the plane of symmetry, will be zero.

2. Moments of inertia must always be positive. Products of inertia may have
either sign.

3. The sum of the three moments of inertia is invariant under orientation changes
in the reference frame.

4. The eigenvalues of an inertia tensor are the principal moments for the body.
The associated eigenvectors are the principal axes.

Most manipulators have links whose geometry and composition are somewhat
complex, so the application of (6.17) is difficult in practice. A pragmatic option is
actually to measure rather than to calculate the moment of inertia of each link by
using a measuring device (e.g., an inertia pendulum).

6.4 NEWTON’S EQUATION, EULER’S EQUATION

We will consider each link of a manipulator as a rigid body. If we know the location of
the center of mass, and the inertia tensor of the link, then its mass distribution is com-
pletely characterized. In order to move the links, we must accelerate and decelerate
them. The forces required for such motion are a function of the acceleration desired
and of the mass distribution of the links. Newton’s equation, along with its rotational
analog, Euler’s equation, describes how forces, inertias, and accelerations relate.
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F

υ?c

FIGURE 6.3: A force F acting at the center of mass of a body causes the body to
accelerate at v̇C .

Newton’s Equation

Figure 6.3 shows a rigid body whose center of mass is accelerating with acceleration
v̇C . In such a situation, the force, F , acting at the center of mass and causing this
acceleration, is given by Newton’s equation

F = mv̇C, (6.29)

where m is the total mass of the body.

Euler’s Equation

Figure 6.4 shows a rigid body rotating with angular velocity ω and with angular accel-
eration ω̇. In such a situation, the moment N , which must be acting on the body to
cause this motion, is given by Euler’s equation

N = CI ω̇ + ω × CIω, (6.30)

where CI is the inertia tensor of the body written in a frame, {C}, whose origin is
located at the center of mass.

ω•
ω

N

FIGURE 6.4: A moment N is acting on a body, and the body is rotating with velocity
ω and accelerating at ω̇.
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6.5 ITERATIVE NEWTON–EULER DYNAMIC FORMULATION

We now consider the problem of computing the torques that correspond to a given
trajectory of a manipulator. We assume we know the position, velocity, and acceler-
ation of the joints, (�, �̇, and �̈). With this knowledge, and with knowledge of the
kinematics and the mass-distribution information of the robot, we can calculate the
joint torques required to cause this motion. The algorithm presented is based upon
the method published by Luh, Walker, and Paul in [2].

Outward Iterations to Compute Velocities and Accelerations

In order to compute inertial forces acting on the links, it is necessary to compute
the rotational velocity and linear and rotational acceleration of the center of mass of
each link of the manipulator at any given instant. These computations will be done
in an iterative way, starting with link 1 and moving successively, link by link, outward
to link n.

The “propagation” of rotational velocity from link to link was discussed in
Chapter 5, and is given (for joint i + 1 rotational) by

i+1ωi+1 = i+1
iR

iωi + θ̇i+1
i+1Ẑi+1. (6.31)

From (6.15), we obtain the equation for transforming angular acceleration from one
link to the next:

i+1ω̇i+1 = i+1
iR

iω̇i + i+1
iR

iωi × θ̇i+1
i+1Ẑi+1 + θ̈i+1

i+1Ẑi+1. (6.32)

When joint i + 1 is prismatic, this simplifies to

i+1ω̇i+1 = i+1
iR

iω̇i . (6.33)

The linear acceleration of each link-frame origin is obtained by the application of
(6.12):

i+1v̇i+1 = i+1
iR[iω̇i × iPi+1 + iωi × (iωi × iPi+1) + iv̇i]. (6.34)

For prismatic joint i + 1, (6.34) becomes [from (6.10)]

i+1v̇i+1 = i+1
iR(iω̇i × iPi+1 + iωi × (iωi × iPi+1) + iv̇i )

+ 2i+1ωi+1 × ḋi+1
i+1Ẑi+1 + d̈i+1

i+1Ẑi+1. (6.35)

We also will need the linear acceleration of the center of mass of each link, which
can be found by applying (6.12):

iv̇Ci
= iω̇i × iPCi

+ iωi × (iωi × iPCi
) + iv̇i , (6.36)

Here, we imagine a frame, {Ci}, attached to each link, having its origin located at
the center of mass of the link, and having the same orientation as the link frame,
{i}. Equation (6.36) doesn’t involve joint motion at all, and so is valid for joint i + 1,
regardless of whether it is revolute or prismatic.

Note that the application of the equations to link 1 is especially simple, because
0ω0 = 0ω̇0 = 0.
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The Force and Torque Acting on a Link

Having computed the linear and angular accelerations of the mass center of each
link, we can apply the Newton–Euler equations (see Section 6.4) to compute the
inertial force and torque acting at the center of mass of each link. Thus, we have

Fi = mv̇Ci
,

Ni = CiI ω̇i + ωi × CiIωi, (6.37)

where {Ci} has its origin at the center of mass of the link, and has the same orientation
as the link frame, {i}.

Inward Iterations to Compute Forces and Torques

Having computed the forces and torques acting on each link, we now need to calcu-
late the joint torques that will result in these net forces and torques being applied to
each link.

We can do this by writing a force-balance and moment-balance equation based
on a free-body diagram of a typical link (see Fig. 6.5). Each link has forces and
torques exerted on it by its neighbors and, in addition, experiences an inertial force
and torque. In Chapter 5, we defined special symbols for the force and torque exerted
by a neighbor link, which we repeat here:

fi = force exerted on link i by link i − 1,
ni = torque exerted on link i by link i − 1.

By summing the forces acting on link i, we arrive at the force-balance
relationship:

iFi = ifi − i
i+1R

i+1fi+1. (6.38)

fi

Ni

Fi

fi 1 1

ni 1 1

ni

{i}

{i 1 1 }

FIGURE 6.5: The force balance, including inertial forces, for a single manipulator
link.
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By summing torques about the center of mass and setting them equal to zero,
we arrive at the torque-balance equation:

iNi = ini − ini+1 + (−iPCi
) × ifi − (iPi+1 − iPCi

) × ifi+1. (6.39)

Using the result from the force-balance relation (6.38) and adding a few rota-
tion matrices, we can write (6.39) as

iNi = ini − i
i+1R

i+1ni+1 − iPCi
× iFi − iPi+1 × i

i+1R
i+1fi+1. (6.40)

Finally, we can rearrange the force and torque equations so that they appear as
iterative relationships from higher numbered neighbor to lower numbered neighbor:

ifi = i
i+1R

i+1fi+1 + iFi, (6.41)

ini = iNi + i
i+1R

i+1ni+1 + iPCi
× iFi + iPi+1 × i

i+1R
i+1fi+1. (6.42)

These equations are evaluated link by link, starting from link n and working
inward toward the base of the robot. These inward force iterations are analogous
to the static force iterations introduced in Chapter 5, except that inertial forces and
torques are now considered at each link.

As in the static case, the required joint torques are found by taking the Ẑ com-
ponent of the torque applied by one link on its neighbor:

τi = inT
i

iẐi . (6.43)

For joint i prismatic, we use

τi = if T
i

iẐi , (6.44)

where we have used the symbol τ for a linear actuator force.
Note that, for a robot moving in free space, N+1fN+1 and N+1nN+1 are set equal

to zero, and so the first application of the equations for link n is simple. If the robot
is in contact with the environment, the forces and torques due to this contact can be
included in the force balance by having nonzero N+1fN+1 and N+1nN+1.

The Iterative Newton–Euler Dynamics Algorithm

The complete algorithm for computing joint torques from the motion of the joints
is composed of two parts. First, link velocities and accelerations are iteratively com-
puted from link 1 out to link n, and the Newton–Euler equations are applied to each
link. Second, forces and torques of interaction and joint actuator torques are com-
puted recursively from link n back to link 1. The equations are summarized next for
the case of all joints rotational:

Outward iterations: i : 0 → 5

i+1ωi+1 = i+1
iR

iωi + θ̇i+1
i+1Ẑi+1, (6.45)

i+1ω̇i+1 = i+1
iR

iω̇i + i+1
iR

iωi × θ̇i+1
i+1Ẑi+1 + θ̈i+1

i+1Ẑi+1, (6.46)
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i+1v̇i+1 = i+1
iR(iω̇i × iPi+1 + iωi × (iωi × iPi+1) + iv̇i ), (6.47)

i+1v̇Ci+1 = i+1ω̇i+1 × i+1PCi+1

+i+1ωi+1 × (i+1ωi+1 × i+1PCi+1) + i+1v̇i+1, (6.48)

i+1Fi+1 = mi+1
i+1v̇Ci+1 , (6.49)

i+1Ni+1 = Ci+1Ii+1
i+1ω̇i+1 + i+1ωi+1 × Ci+1Ii+1

i+1ωi+1. (6.50)

Inward iterations: i : 6 → 1

ifi = i
i+1R

i+1fi+1 + iFi, (6.51)

ini = iNi + i
i+1R

i+1ni+1 + iPCi
× iFi

+iPi+1 × i
i+1R

i+1fi+1, (6.52)

τi = inT
i

iẐi . (6.53)

Inclusion of Gravity Forces in the Dynamics Algorithm

The effect of gravity loading on the links can be included quite simply by setting
0v̇0 = G, where G has the magnitude of the gravity vector, but points in the oppo-
site direction. This is equivalent to saying that the base of the robot is accelerating
upward with 1 g acceleration. This fictitious upward acceleration causes exactly the
same effect on the links as gravity would. So, with no extra computational expense,
the gravity effect is calculated.

6.6 ITERATIVE VS. CLOSED FORM

Equations (6.46) through (6.53) give a computational scheme whereby (given
the joint positions, velocities, and accelerations), we can compute the required
joint torques. As with our development of equations to compute the Jacobian in
Chapter 5, these relations can be used in two ways: as a numerical computational
algorithm, or as an algorithm used analytically to develop symbolic equations.

Use of the equations as a numerical computational algorithm is attractive
because the equations apply to any robot. Once the inertia tensors, link masses, PCi

vectors, and i+1
iR matrices are specified for a particular manipulator, the equations

can be applied directly to compute the joint torques corresponding to any motion.
However, we often are interested in obtaining better insight into the struc-

ture of the equations. For example, what is the form of the gravity terms? How
does the magnitude of the gravity effects compare with the magnitude of the inertial
effects? To investigate these and other questions, it is often useful to write closed-
form dynamic equations. These equations can be derived by applying the recursive
Newton–Euler equations symbolically to �, �̇, and �̈. This is analogous to what we
did in Chapter 5 to derive the symbolic form of the Jacobian.
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6.7 AN EXAMPLE OF CLOSED-FORM DYNAMIC EQUATIONS

Here, we compute the closed-form dynamic equations for the two-link planar manip-
ulator shown in Fig. 6.6. We assume that the mass distribution is extremely simple:
All mass exists as a point mass at the distal end of each link. These masses are m1
and m2.

First, we determine the values of the various quantities that will appear in the
recursive Newton–Euler equations. The vectors that locate the center of mass for
each link are

1PC1 = l1X̂1, and

2PC2 = l2X̂2.

Because of the point-mass assumption, the inertia tensor written at the center of
mass for each link is the zero matrix:

C1I1 = 0,

C2I2 = 0.

There are no forces acting on the end-effector, so we have

f3 = 0,

n3 = 0.

The base of the robot is not rotating; hence, we have

ω0 = 0,

ω̇0 = 0.

θ1

θ2

τ1

τ2

l1

l2

m1

m2

FIGURE 6.6: Two-link planar manipulator with point masses at distal ends of links.
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To include gravity forces, we will use

0v̇0 = gŶ0.

The rotation between successive link frames is given by

i
i+1R =

⎡
⎣

ci+1 −si+1 0.0
si+1 ci+1 0.0

0.0 0.0 1.0

⎤
⎦ ,

i+1
iR =

⎡
⎣

ci+1 si+1 0.0
−si+1 ci+1 0.0

0.0 0.0 1.0

⎤
⎦ .

We now apply equations (6.46) through (6.53).
The outward iterations for link 1 are as follows:

1ω1 = θ̇1
1Ẑ1 =

⎡
⎣

0
0

θ̇1

⎤
⎦ ,

1ω̇1 = θ̈1
1Ẑ1 =

⎡
⎣

0
0

θ̈1

⎤
⎦ ,

1v̇1 =
⎡
⎣

c1 s1 0
−s1 c1 0

0 0 1

⎤
⎦

⎡
⎣

0
g

0

⎤
⎦ =

⎡
⎣

gs1
gc1
0

⎤
⎦ ,

1v̇C1 =
⎡
⎣

0
l1θ̈1

0

⎤
⎦ +

⎡
⎣

−l1θ̇
2
1

0
0

⎤
⎦ +

⎡
⎣

gs1
gc1
0

⎤
⎦ =

⎡
⎣

−l1θ̇
2
1 + gs1

l1θ̈1 + gc1
0

⎤
⎦ ,

1F1 =
⎡
⎣

−m1l1θ̇
2
1 + m1gs1

m1l1θ̈1 + m1gc1
0

⎤
⎦ ,

1N1 =
⎡
⎣

0
0
0

⎤
⎦ . (6.54)

The outward iterations for link 2 are as follows:

2ω2 =
⎡
⎣

0
0

θ̇1 + θ̇2

⎤
⎦ ,

2ω̇2 =
⎡
⎣

0
0

θ̈1 + θ̈2

⎤
⎦ ,
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2v̇2 =
⎡
⎣

c2 s2 0
−s2 c2 0

0 0 1

⎤
⎦

⎡
⎣

−l1θ̇
2
1 + gs1

l1θ̈1 + gc1
0

⎤
⎦ =

⎡
⎢⎣

l1θ̈1s2 − l1θ̇
2
1 c2 + gs12

l1θ̈1c2 + l1θ̇
2
1 s2 + gc12

0

⎤
⎥⎦ ,

2v̇C2 =
⎡
⎣

0
l2(θ̈1 + θ̈2)

0

⎤
⎦ +

⎡
⎣

−l2(θ̇1 + θ̇2)
2

0
0

⎤
⎦

+
⎡
⎢⎣

l1θ̈1s2 − l1θ̇
2
1 c2 + gs12

l1θ̈1c2 + l1θ̇
2
1 s2 + gc12

0

⎤
⎥⎦ , (6.55)

2F2 =
⎡
⎢⎣

m2l1θ̈1s2 − m2l1θ̇
2
1 c2 + m2gs12 − m2l2(θ̇1 + θ̇2)

2

m2l1θ̈1c2 + m2l1θ̇
2
1 s2 + m2gc12 + m2l2(θ̈1 + θ̈2)

0

⎤
⎥⎦ ,

2N2 =
⎡
⎣

0
0
0

⎤
⎦ .

The inward iterations for link 2 are as follows:

2f2 = 2F2,

2n2 =
⎡
⎣

0
0

m2l1l2c2θ̈1 + m2l1l2s2θ̇
2
1 + m2l2gc12 + m2l

2
2(θ̈1 + θ̈2)

⎤
⎦ . (6.56)

The inward iterations for link 1 are as follows:

1f1 =
⎡
⎣

c2 −s2 0
s2 c2 0
0 0 1

⎤
⎦

⎡
⎢⎣

m2l1s2θ̈1 − m2l1c2θ̇
2
1 + m2gs12 − m2l2(θ̇1 + θ̇2)

2

m2l1c2θ̈1 + m2l1s2θ̇
2
1 + m2gc12 + m2l2(θ̈1 + θ̈2)

0

⎤
⎥⎦

+
⎡
⎣

−m1l1θ̇
2
1 + m1gs1

m1l1θ̈1 + m1gc1
0

⎤
⎦ ,

1n1 =
⎡
⎣

0
0

m2l1l2c2θ̈1 + m2l1l2s2θ̇
2
1 + m2l2gc12 + m2l

2
2(θ̈1 + θ̈2)

⎤
⎦

+
⎡
⎣

0
0

m1l
2
1 θ̈1 + m1l1gc1

⎤
⎦

+

⎡
⎢⎢⎣

0
0

m2l
2
1 θ̈1 − m2l1l2s2(θ̇1 + θ̇2)

2 + m2l1gs2s12

+m2l1l2c2(θ̈1 + θ̈2) + m2l1gc2c12

⎤
⎥⎥⎦ . (6.57)



“runall”
2021/5/7
page 200

�

�

�

�

�

�

�

�

200 Chapter 6 Manipulator Dynamics

Extracting the Ẑ components of the ini , we find the joint torques:

τ1 = m2l
2
2(θ̈1 + θ̈2) + m2l1l2c2(2θ̈1 + θ̈2) + (m1 + m2)l

2
1 θ̈1 − m2l1l2s2θ̇

2
2

−2m2l1l2s2θ̇1θ̇2 + m2l2gc12 + (m1 + m2)l1gc1,

τ2 = m2l1l2c2θ̈1 + m2l1l2s2θ̇
2
1 + m2l2gc12 + m2l

2
2(θ̈1 + θ̈2). (6.58)

Equations (6.58) give expressions for the torque at the actuators as a function
of joint position, velocity, and acceleration. Note that these rather complex functions
arose from one of the simplest manipulators imaginable. Obviously, the closed-form
equations for a manipulator with six degrees of freedom will be quite complex.

6.8 THE STRUCTURE OF A MANIPULATOR’S DYNAMIC EQUATIONS

It is often convenient to express the dynamic equations of a manipulator in a sin-
gle equation that hides some of the details, but shows some of the structure of the
equations.

The State-Space Equation

When the Newton–Euler equations are evaluated symbolically for any manipulator,
they yield a dynamic equation that can be written in the form

τ = M(�)�̈ + V (�, �̇) + G(�), (6.59)

where M(�) is the n × n mass matrix of the manipulator, V (�, �̇) is an n × 1 vector
of centrifugal and Coriolis terms, and G(�) is an n × 1 vector of gravity terms. We
use the term state-space equation because the term V (�, �̇), appearing in (6.59),
has both position and velocity dependence [3].

Each element of M(�) and G(�) is a complex function that depends on �, the
position of all the joints of the manipulator. Each element of V (�, �̇) is a complex
function of both � and �̇.

We may separate the various types of terms appearing in the dynamic equations
and form the mass matrix of the manipulator, the centrifugal and Coriolis vector, and
the gravity vector.

EXAMPLE 6.3

Give M(�), V (�, �̇), and G(�) for the manipulator of Section 6.7.
Equation (6.59) defines the manipulator mass matrix, M(�); it is composed of

all those terms which multiply �̈, and is a function of �. Therefore, we have

M(�) =
[

l2
2m2 + 2l1l2m2c2 + l2

1(m1 + m2) l2
2m2 + l1l2m2c2

l2
2m2 + l1l2m2c2 l2

2m2

]
. (6.60)

Any manipulator mass matrix is symmetric and positive definite, and is, therefore,
always invertible.

The velocity term, V (�, �̇), contains all those terms that have any dependence
on joint velocity. Thus, we obtain

V (�, �̇) =
[ −m2l1l2s2θ̇

2
2 − 2m2l1l2s2θ̇1θ̇2

m2l1l2s2θ̇
2
1

]
. (6.61)
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A term like −m2l1l2s2θ̇
2
2 is caused by a centrifugal force, and is recognized as such

because it depends on the square of a joint velocity. A term such as −2m2l1l2s2θ̇1θ̇2 is
caused by a Coriolis force, and will always contain the product of two different joint
velocities.

The gravity term, G(�), contains all those terms in which the gravitational con-
stant, g, appears. Therefore, we have

G(�) =
[

m2l2gc12 + (m1 + m2)l1gc1
m2l2gc12

]
. (6.62)

Note the gravity term depends only on �, and not on its derivatives.

The Configuration-Space Equation

By writing the velocity-dependent term, V (�, �̇), in a different form, we can write
the dynamic equations as

τ = M(�)�̈ + B(�)[�̇�̇] + C(�)[�̇2] + G(�), (6.63)

where B(�) is a matrix of dimensions n × n(n − 1)/2 of Coriolis coefficients, [�̇�̇] is
an n(n − 1)/2 × 1 vector of joint velocity products given by

[�̇�̇] = [θ̇1θ̇2 θ̇1θ̇3 . . . θ̇n−1θ̇n]T , (6.64)

C(�) is an n × n matrix of centrifugal coefficients, and [�̇2] is an n × 1 vector given
by

[θ̇2
1 θ̇2

2 . . . θ̇2
n ]T . (6.65)

We will call (6.63) the configuration-space equation, because the matrices are func-
tions only of manipulator position [3].

In this form of the dynamic equations, the complexity of the computation is
seen to be in the form of computing various parameters which are a function of
only the manipulator position, �. This is important in applications (such as com-
puter control of a manipulator) in which the dynamic equations must be updated
as the manipulator moves. (Equation (6.63) gives a form in which parameters are a
function of joint position only, and can be updated at a rate related to how fast the
manipulator is changing configuration.) We will consider this form again with regard
to the problem of manipulator control in Chapter 10.

EXAMPLE 6.4

Give B(�) and C(�) [from (6.63)] for the manipulator of Section 6.7.
For this simple two-link manipulator, we have

[�̇�] = [θ̇1θ̇2],

[�̇2] =
[

θ̇2
1

θ̇2
2

]
. (6.66)
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So, we see that

B(�) =
[

−2m2l1l2s2

0

]
(6.67)

and

C(�) =
[

0 −m2l1l2s2

m2l1l2s2 0

]
. (6.68)

6.9 LAGRANGIAN FORMULATION OF MANIPULATOR DYNAMICS

The Newton–Euler approach is based on the elementary dynamic formulas (6.29)
and (6.30) and on an analysis of forces and moments of constraint acting between the
links. As an alternative to the Newton–Euler method, in this section, we will briefly
introduce the Lagrangian dynamic formulation. Whereas the Newton–Euler formu-
lation might be said to be a “force balance” approach to dynamics, the Lagrangian
formulation is an “energy-based” approach to dynamics. Of course, for the same
manipulator, both approaches will give the same equations of motion. Our state-
ment of Lagrangian dynamics will be brief and somewhat specialized to the case
of a serial-chain mechanical manipulator with rigid links. For a more complete and
general reference, see [4].

We start by developing an expression for the kinetic energy of a manipulator.
The kinetic energy of the ith link, ki , can be expressed as

ki = 1
2miv

T
Ci

vCi
+ 1

2
iωT

i
Ci Ii

iωi, (6.69)

where the first term is kinetic energy due to linear velocity of the link’s center of mass,
and the second term is kinetic energy due to angular velocity of the link. The total
kinetic energy of the manipulator is the sum of the kinetic energy in the individual
links—that is,

k =
n∑

i=1

ki . (6.70)

The vCi
and iωi in (6.69) are functions of � and �̇, so we see that the kinetic energy

of a manipulator can be described by a scalar formula as a function of joint position
and velocity, k(�, �̇). In fact, the kinetic energy of a manipulator is given by

k(�, �̇) = 1
2 �̇T M(�)�̇, (6.71)

where M(�) is the n × n manipulator mass matrix already introduced in Section 6.8.
An expression of the form of (6.71) is known as a quadratic form [5], since when
expanded out, the resulting scalar equation is composed solely of terms whose
dependence on the θ̇i is quadratic. Further, because the total kinetic energy must
always be positive, the manipulator mass matrix must be a so-called positive definite
matrix. Positive definite matrices are those having the property that their quadratic
form is always a positive scalar. Equation (6.71) can be seen to be analogous to the
familiar expression for the kinetic energy of a point mass:

k = 1
2mv2. (6.72)
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The fact that a manipulator mass matrix must be positive definite is analogous to the
fact that a scalar mass is always a positive number.

The potential energy of the ith link, ui , can be expressed as

ui = −mi
0gT 0PCi

+ urefi
, (6.73)

where 0g is the 3 × 1 gravity vector, 0PCi
is the vector locating the center of mass of

the ith link, and urefi
is a constant chosen so the minimum value of ui is zero.1 The

total potential energy stored in the manipulator is the sum of the potential energy in
the individual links—that is,

u =
n∑

i=1

ui. (6.74)

Because the 0PCi
in (6.73) are functions of �, we see that the potential energy

of a manipulator can be described by a scalar formula as a function of joint position,
u(�).

The Lagrangian dynamic formulation provides a means of deriving the equa-
tions of motion from a scalar function called the Lagrangian, which is defined as the
difference between the kinetic and potential energy of a mechanical system. In our
notation, the Lagrangian of a manipulator is

L(�, �̇) = k(�, �̇) − u(�). (6.75)

The equations of motion for the manipulator are then given by

d

dt

∂L
∂�̇

− ∂L
∂�

= τ, (6.76)

where τ is the n × 1 vector of actuator torques. In the case of a manipulator, this
equation becomes

d

dt

∂k

∂�̇
− ∂k

∂�
+ ∂u

∂�
= τ, (6.77)

where the arguments of k(·) and u(·) have been dropped for brevity.

EXAMPLE 6.5

The links of an RP manipulator, shown in Fig. 6.7, have inertia tensors

C1I1 =
⎡
⎣

Ixx1 0 0
0 Iyy1 0
0 0 Izz1

⎤
⎦ ,

C2I2 =
⎡
⎣

Ixx2 0 0
0 Iyy2 0
0 0 Izz2

⎤
⎦ , (6.78)

1Actually, only the partial derivative of the potential energy with respect to � will appear in the dynam-
ics, so this constant is arbitrary. This corresponds to defining the potential energy relative to an arbitrary
zero reference height.
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l1

m1

θ1

m2

g

d2

FIGURE 6.7: The RP manipulator of Example 6.5.

and total mass m1 and m2. As shown in Fig. 6.7, the center of mass of link 1 is located
at a distance l1 from the joint-1 axis, and the center of mass of link 2 is at the variable
distance d2 from the joint-1 axis. Use Lagrangian dynamics to determine the equation
of motion for this manipulator.

Using (6.69), we write the kinetic energy of link 1 as

k1 = 1
2m1l

2
1 θ̇2

1 + 1
2Izz1 θ̇2

1 , (6.79)

and the kinetic energy of link 2 as

k2 = 1
2m2(d

2
2 θ̇2

1 + ḋ2
2 ) + 1

2Iyy2 θ̇2
1 . (6.80)

Hence, the total kinetic energy is given by

k(�, �̇) = 1
2 (m1l

2
1 + Izz1 + Iyy2 + m2d

2
2 )θ̇2

1 + 1
2m2ḋ

2
2 . (6.81)

Using (6.73), we write the potential energy of link 1 as

u1 = m1l1g sin(θ1) + m1l1g, (6.82)

and the potential energy of link 2 as

u2 = m2gd2 sin(θ1) + m2gd2max, (6.83)

where d2max is the maximum extension of joint 2. Hence, the total potential energy
is given by

u(�) = g(m1l1 + m2d2) sin(θ1) + m1l1g + m2gd2max. (6.84)
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Next, we take partial derivatives as needed for (6.77):

∂k

∂�̇
=

[
(m1l

2
1 + Izz1 + Iyy2 + m2d

2
2 )θ̇1

m2ḋ2

]
, (6.85)

∂k

∂�
=

[
0

m2d2θ̇
2
1

]
, (6.86)

∂u

∂�
=

[
g(m1l1 + m2d2) cos(θ1)

gm2 sin(θ1)

]
. (6.87)

Finally, substituting into (6.77), we have

τ1 = (m1l
2
1 + Izz1 + Iyy2 + m2d

2
2 )θ̈1 + 2m2d2θ̇1ḋ2

+(m1l1 + m2d2)g cos(θ1), (6.88)

τ2 = m2d̈2 − m2d2θ̇
2
1 + m2g sin(θ1).

From (6.88), we can see that

M(�) =
[

(m1l
2
1 + Izz1 + Iyy2 + m2d

2
2 ) 0

0 m2

]
,

V (�, �̇) =
[

2m2d2θ̇1ḋ2

−m2d2θ̇
2
1

]
, (6.89)

G(�) =
[

(m1l1 + m2d2)g cos(θ1)

m2g sin(θ1)

]
.

6.10 FORMULATING MANIPULATOR DYNAMICS IN CARTESIAN SPACE

Our dynamic equations have been developed in terms of the position and time
derivatives of the manipulator joint angles, or in joint space, with the general form

τ = M(�)�̈ + V (�, �̇) + G(�). (6.90)

We developed this equation in joint space because we could use the serial-link nature
of the mechanism to our advantage in deriving the equations. In this section, we will
discuss the formulation of the dynamic equations that relate acceleration of the end-
effector expressed in Cartesian space to Cartesian forces and moments acting at the
end-effector.

The Cartesian State-Space Equation

As will be explained in Chapters 10 and 11, it might be desirable to express the
dynamics of a manipulator with respect to Cartesian variables in the general form [6]

F = Mx(�)χ̈ + Vx(�, �̇) + Gx(�), (6.91)
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where F is a force–torque vector acting on the end-effector of the robot, and χ is
an appropriate Cartesian vector representing position and orientation of the end-
effector [7]. Analogous to the joint-space quantities, Mx(�) is the Cartesian mass
matrix, Vx(�, �̇) is a vector of velocity terms in Cartesian space, and Gx(�) is a
vector of gravity terms in Cartesian space. Note that the fictitious forces acting on
the end-effector, F, could in fact be applied by the actuators at the joints by using
the relationship

τ = JT (�)F, (6.92)

where the Jacobian, J (�), is written in the same frame as F and χ̈ , usually the tool
frame, {T }.

We can derive the relationship between the terms of (6.90) and those of (6.91)
in the following way. First, we premultiply (6.90) by the inverse of the Jacobian trans-
pose to obtain

J−T τ = J−T M(�)�̈ + J−T V (�, �̇) + J−T G(�), (6.93)

or
F = J−T M(�)�̈ + J−T V (�, �̇) + J−T G(�). (6.94)

Next, we develop a relationship between joint space and Cartesian acceleration,
starting with the definition of the Jacobian,

χ̇ = J �̇, (6.95)

and differentiating to obtain
χ̈ = J̇ �̇ + J �̈. (6.96)

Solving (6.96) for joint-space acceleration leads to

�̈ = J−1χ̈ − J−1J̇ �̇. (6.97)

Substituting (6.97) into (6.94), we have

F = J−T M(�)J−1χ̈ − J−T M(�)J−1J̇ �̇ + J−T V (�, �̇) + J−T G(�), (6.98)

from which we derive the expressions for the terms in the Cartesian dynamics as

Mx(�) = J−T (�)M(�)J−1(�),

Vx(�, �̇) = J−T (�)(V (�, �̇) − M(�)J−1(�)J̇ (�)�̇), (6.99)

Gx(�) = J−T (�)G(�).

Note that the Jacobian appearing in equations (6.100) is written in the same
frames as F and χ in (6.91); the choice of this frame is arbitrary.2 Note also that,
when the manipulator approaches a singularity, certain quantities in the Cartesian
dynamics become infinite.

2Certain choices could facilitate computation.
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EXAMPLE 6.6

Derive the Cartesian-space form of the dynamics for the two-link planar arm of
Section 6.7. Write the dynamics in terms of a frame attached to the end of the second
link.

For this manipulator, we have already obtained the dynamics (in Section 6.7)
and the Jacobian [equation (5.66)], which we restate here:

J (�) =
[

l1s2 0

l1c2 + l2 l2

]
. (6.100)

First, compute the inverse Jacobian:

J−1(�) = 1
l1l2s2

[
l2 0

−l1c2 − l2 l1s2

]
. (6.101)

Next, obtain the time derivative of the Jacobian:

J̇ (�) =
[

l1c2θ̇2 0

−l1s2θ2 0

]
. (6.102)

Using (6.100) and the results of Section 6.7, we get

Mx(�) =
[

m2 + m1
s2
2

0

0 m2

]
,

Vx(�, �̇) =
⎡
⎣ −(m2l1c2 + m2l2)θ̇

2
1 − m2l2θ̇

2
2 − (2m2l2 + m2l1c2 + m1l1

c2

s2
2

)θ̇1θ̇2

m2l1s2θ̇
2
1 + l1m2s2θ̇1θ̇2

⎤
⎦ ,

Gx(�) =
[

m1g
c1

s2
+ m2gs12

m2gc12

]
. (6.103)

When s2 = 0, the manipulator is in a singular position, and some of the dynamic
terms go to infinity. For example, when θ2 = 0 (arm stretched straight out), the effec-
tive Cartesian mass of the end-effector becomes infinite in the X̂2 direction of the
link-2 tip frame, as expected. In general, at a singular configuration, there is a certain
direction—the singular direction—in which motion is impossible, but general motion
in the subspace “orthogonal” to this direction is possible [8].

The Cartesian Configuration Space Torque Equation

Combining (6.91) and (6.92), we can write equivalent joint torques with the dynamics
expressed in Cartesian space:

τ = J T (�)(Mx(�)χ̈ + Vx(�, �̇) + Gx(�)). (6.104)

We will find it useful to write this equation in the form

τ = JT (�)Mx(�)χ̈ + Bx(�)[�̇�̇] + Cx(�)[�̇2] + G(�), (6.105)
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where Bx(�) is a matrix of dimension n × n(n − 1)/2 of Coriolis coefficients, [�̇�̇] is
an n(n − 1)/2 × 1 vector of joint velocity products given by

[�̇�̇] = [θ̇1θ̇2 θ̇1 θ̇3 . . . θ̇n−1θ̇n]T , (6.106)

Cx(�) is an n × n matrix of centrifugal coefficients, and [�̇2] is an n × 1 vector given
by

[θ̇2
1 θ̇2

2 . . . θ̇2
n ]T . (6.107)

Note that, in (6.105), G(�) is the same as in the joint-space equation, but in general,
Bx(�) �= B(�) and Cx(�) �= C(�).

EXAMPLE 6.7

Find Bx(�) and Cx(�) [from (6.105)] for the manipulator of Section 6.7.
If we form the product J T (�)Vx(�, �̇), we find that

Bx(�) =
[

m1l
2
1

c2
s2

− m2l1l2s2

m2l1l2s2

]
(6.108)

and

Cx(�) =
[

0 −m2l1l2s2
m2l1l2s2 0

]
. (6.109)

6.11 INCLUSION OF NONRIGID BODY EFFECTS

It is important to realize that the dynamic equations we have derived do not encom-
pass all the effects acting on a manipulator. They include only those forces which
arise from rigid body mechanics. The most important source of forces that are not
included is friction. All mechanisms are, of course, affected by frictional forces. In
present-day manipulators, in which significant gearing is typical, the forces due to
friction can actually be quite large—equaling as much as 25% of the torque required
to move the manipulator in typical situations.

In order to make dynamic equations reflect the reality of the physical device, it
is important to model (at least approximately) these forces of friction. A very simple
model for friction is viscous friction, in which the torque due to friction is propor-
tional to the velocity of joint motion. Thus, we have

τfriction = vθ̇, (6.110)

where v is a viscous-friction constant. Another possible simple model for friction,
Coulomb friction, is sometimes used. Coulomb friction is constant except for a sign
dependence on the joint velocity, and is given by

τfriction = c sgn(θ̇), (6.111)

where c is a Coulomb-friction constant. The value of c is often taken at one value
when θ̇ = 0 (the static coefficient), but at a lower value (the dynamic coefficient),
when θ̇ �= 0. Whether a joint of a particular manipulator exhibits viscous or Coulomb
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friction is a complicated issue of lubrication and other effects. A reasonable model
is to include both, because both effects are likely:

τf riction = c sgn(θ̇) + vθ̇ . (6.112)

It turns out that, in many manipulator joints, friction also displays a dependence
on the joint position. A major cause of this effect might be gears that are not perfectly
round; their eccentricity would cause friction to change according to joint position.
So, a fairly complex friction model would have the form

τf riction = f (θ, θ̇). (6.113)

These friction models are then added to the other dynamic terms derived from the
rigid-body model, yielding the more complete model

τ = M(�)�̈ + V (�, �̇) + G(�) + F(�, �̇). (6.114)

There are also other effects, which are omitted in this model. For example, the
assumption of rigid body links means that we have failed to include bending effects
(which give rise to resonances) in our equations of motion. However, these effects
are extremely difficult to model, and are beyond the scope of this book (see [9, 10]).

6.12 DYNAMIC SIMULATION

To simulate the motion of a manipulator, we must make use of a model of the dynam-
ics such as the one we have just developed. Given the dynamics written in closed form
such as in (6.59), simulation requires solving the dynamic equation for acceleration:

�̈ = M−1(�)[τ − V (�, �̇) − G(�) − F(�, �̇)]. (6.115)

We can then apply any of several known numerical integration techniques to inte-
grate the acceleration to compute future positions and velocities.

Given initial conditions on the motion of the manipulator, usually in the form

�(0) = �0,

�̇(0) = 0, (6.116)

we integrate (6.115) forward in time numerically by steps of size �t . There are many
methods of performing numerical integration [11]. Here, we introduce the simplest
integration scheme, called Euler integration: Starting with t = 0, iteratively compute

�̇(t + �t) = �̇(t) + �̈(t)�t,

�(t + �t) = �(t) + �̇(t)�t + 1
2�̈(t)�t2, (6.117)

where, for each iteration, (6.115) is computed to calculate �̈. In this way, the posi-
tion, velocity, and acceleration of the manipulator caused by a certain input torque
function can be computed numerically.

Euler integration is conceptually simple, but more sophisticated integration
techniques are recommended for accurate and efficient simulation [11]. How to
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select the size of �t is an issue that is often discussed; it should be sufficiently
small that breaking continuous time into these small increments is a reasonable
approximation, yet it should be sufficiently large that an excessive amount of
computer time is not required to compute a simulation.

6.13 COMPUTATIONAL CONSIDERATIONS

Because the dynamic equations of motion for typical manipulators are so complex,
it is important to consider computational issues. In this section, we will restrict our
attention to joint-space dynamics. Some issues of computational efficiency of Carte-
sian dynamics are discussed in [7, 8].

A Historical Note Concerning Efficiency

Counting the number of multiplications and additions for the equations (6.46)–
(6.53) when taking into consideration the simple first outward computation and
simple last inward computation, we get

126n − 99 multiplications, and

106n − 92 additions,

where n is the number of links (here, at least two). Although still somewhat complex,
the formulation is tremendously efficient in comparison with some previously sug-
gested formulations of manipulator dynamics. The first formulation of the dynamics
for a manipulator [12, 13] was done via a fairly straightforward Lagrangian approach
whose required computations came out to be approximately [14]

32n4 + 86n3 + 171n2 + 53n − 128 multiplications, and

25n4 + 66n3 + 129n2 + 42n − 96 additions.

For a typical case, n = 6, the iterative Newton–Euler scheme is about 100 times
more efficient! The two approaches must, of course, yield equivalent equations, and
numeric calculations would yield exactly the same results, but the structure of the
equations is quite different. This is not to say that a Lagrangian approach cannot
be made to produce efficient equations. Rather, this comparison indicates that, in
formulating a computational scheme for this problem, care must be taken as regards
efficiency. The relative efficiency of the method we have presented stems from posing
the computations as iterations from link to link, and in the particulars of how the
various quantities are represented [15].

Renaud [16] and Liegois et al. [17] made early contributions concerning the
formulation of the mass-distribution descriptions of the links. While studying the
modeling of human limbs, Stepanenko and Vukobratovic [18] began investigating a
“Newton–Euler” approach to dynamics instead of the somewhat more traditional
Lagrangian approach. This work was revised for efficiency by Orin et al. [19] in an
application to the legs of walking robots. Orin’s group improved the efficiency some-
what by writing the forces and moments in the local link-reference frames instead of
in the inertial frame. They also noticed the sequential nature of calculations from one



“runall”
2021/5/7
page 211

�

�

�

�

�

�

�

�

Section 6.13 Computational Considerations 211

link to the next, and speculated that an efficient recursive formulation might exist.
Armstrong [20] and Luh, Walker, and Paul [2] paid close attention to details of effi-
ciency, and published an algorithm that is O(n) in complexity. This was accomplished
by setting up the calculations in an iterative (or recursive) nature, and by express-
ing the velocities and accelerations of the links in the local link frames. Hollerbach
[14] and Silver [15] further explored various computational algorithms. Hollerbach
and Sahar [21] showed that, for certain specialized geometries, the complexity of the
algorithm would reduce further.

Efficiency of Closed Form vs. that of Iterative Form

The iterative scheme introduced in this chapter is quite efficient as a general means
of computing the dynamics of any manipulator, but closed-form equations derived
for a particular manipulator will usually be even more efficient. Consider the two-
link planar manipulator of Section 6.7. Plugging n = 2 into the formulas given in
Section 6.13, we find that our iterative scheme would require 153 multiplications
and 120 additions to compute the dynamics of a general two-link. However, our
particular two-link arm happens to be quite simple: It is planar, and the masses
are treated as point masses. So, if we consider the closed-form equations that we
worked out in Section 6.7, we see that computation of the dynamics in this form
requires about 30 multiplications and 13 additions. This is an extreme case, because
the particular manipulator is very simple, but it illustrates the point that symbolic
closed-form equations are likely to be the most efficient formulation of dynamics.
Several authors have published articles showing that, for any given manipulator, cus-
tomized closed-form dynamics are more efficient than even the best of the general
schemes [22–27].

Hence, if manipulators are designed to be simple in the kinematic and dynamic
sense, they will have dynamic equations that are simple. We might define a kinemat-
ically simple manipulator to be a manipulator that has many (or all) of its link twists
equal to 0◦, 90◦, or −90◦, and many of its link lengths and offsets equal to zero. We
might define a dynamically simple manipulator as one for which each link-inertia
tensor is diagonal in frame {Ci}.

The drawback of formulating closed-form equations is simply that it currently
requires a fair amount of human effort. However, symbolic manipulation programs
that can derive the closed-form equations of motion of a device, and automatically
factor out common terms and perform trigonometric substitutions, have been devel-
oped [25, 28–30].

Efficient Dynamics for Simulation

When dynamics are to be computed for the purpose of performing a numerical
simulation of a manipulator, we are interested in solving for the joint accelerations,
given the manipulator’s current position, velocity, and the input torques. An efficient
computational scheme must therefore address both the computation of the dynamic
equations studied in this chapter, and efficient schemes for solving equations (for
joint accelerations) and performing numerical integration. Several efficient methods
for dynamic simulation of manipulators are reported in [31].
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Memorization Schemes

In any computational scheme, a trade-off can be made between computations and
memory usage. In the problem of computing the dynamic equation of a manipulator
(6.59), we have implicitly assumed that, when a value of τ is needed, it is computed
as quickly as possible from �, �̇, and �̈ at run time. If we wish, we can trade off this
computational burden at the cost of an expansive memory by precomputing (6.59)
for all possible �, �̇, and �̈ values (suitably quantized). Then, when dynamic infor-
mation is needed, the answer is found by table lookup.

The size of the memory required is large. Assume that each joint angle range
is quantized to ten discrete values; likewise, assume that velocities and accelerations
are quantized to ten ranges each. For a six-jointed manipulator, the number of cells in
the (�, �̇, �̈) quantized space is (10 × 10 × 10)6. In each of these cells, there are six
torque values. Assuming each torque value requires one computer word, this mem-
ory size is 6 × 1018 words! Also, note that the table needs to be recomputed for a
change in the mass of the load—or else another dimension needs to be added to
account for all possible loads.

There are many intermediate solutions that trade off memory for computation
in various ways. For example, if the matrices appearing in equation (6.63) were pre-
computed, the table would have only one dimension (in �) rather than three. After
the functions of � are looked up, a modest amount of computation [given by (6.63)]
is done. For more details and for other possible parameterizations of this problem,
see [3] and [6].

BIBLIOGRAPHY

[1] I. Shames, Engineering Mechanics, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ,
1967.

[2] J.Y.S. Luh, M.W. Walker, and R.P. Paul, “On-Line Computational Scheme for Mechan-
ical Manipulators,” Transactions of the ASME Journal of Dynamic Systems, Measure-
ment, and Control, 1980.

[3] M. Raibert, “Mechanical Arm Control Using a State Space Memory,” SME paper
MS77-750, 1977.

[4] K.R. Symon, Mechanics, 3rd edition, Addison-Wesley, Reading, MA, 1971.

[5] B. Noble, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1969.

[6] O. Khatib, “Commande Dynamique dans L’Espace Operationnel des Robots Manip-
ulateurs en Presence d’Obstacles,” These de Docteur-Ingenieur. Ecole Nationale
Superieure de l’Aeronautique et de L’Espace (ENSAE), Toulouse.

[7] O. Khatib, “Dynamic Control of Manipulators in Operational Space,” Sixth IFTOMM
Congress on Theory of Machines and Mechanisms, New Delhi, December 15–20,
1983.

[8] O. Khatib, “The Operational Space Formulation in Robot Manipulator Control,”
15th ISIR, Tokyo, September 11–13, 1985.

[9] E. Schmitz, “Experiments on the End-Point Position Control of a Very Flexible
One-Link Manipulator,” Unpublished Ph.D. Thesis, Department of Aeronautics and
Astronautics, Stanford University, SUDAAR No. 547, June 1985.

[10] W. Book, “Recursive Lagrangian Dynamics of Flexible Manipulator Arms,” Interna-
tional Journal of Robotics Research, Vol. 3, No. 3, 1984.



“runall”
2021/5/7
page 213

�

�

�

�

�

�

�

�

Bibliography 213

[11] S. Conte and C. DeBoor, Elementary Numerical Analysis: An Algorithmic Approach,
2nd edition, McGraw-Hill, New York, 1972.

[12] J. Uicker, “On the Dynamic Analysis of Spatial Linkages Using 4 × 4 Matrices,”
Unpublished Ph.D dissertation, Northwestern University, Evanston, IL, 1965.

[13] J. Uicker, “Dynamic Behaviour of Spatial Linkages,” ASME Mechanisms, Vol. 5,
No. 68, pp. 1–15.

[14] J.M. Hollerbach, “A Recursive Lagrangian Formulation of Manipulator Dynamics
and a Comparative Study of Dynamics Formulation Complexity,” in Robot Motion,
M. Brady et al., Editors, MIT Press, Cambridge, MA, 1983.

[15] W. Silver, “On the Equivalence of Lagrangian and Newton–Euler Dynamics for
Manipulators,” International Journal of Robotics Research, Vol. 1, No. 2, pp. 60–70.
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Sabatier, Toulouse, December 1975.

[17] A. Liegois, W. Khalil, J.M. Dumas, and M. Renaud, “Mathematical Models of Inter-
connected Mechanical Systems,” Symposium on the Theory and Practice of Robots
and Manipulators, Poland, 1976.

[18] Y. Stepanenko and M. Vukobratovic, “Dynamics of Articulated Open-Chain Active
Mechanisms,” Math-Biosciences Vol. 28, 1976, pp. 137–170.

[19] D.E. Orin et al, “Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing
Newton–Euler Methods,” Math-Biosciences Vol. 43, 1979, pp. 107–130.

[20] W.W. Armstrong, “Recursive Solution to the Equations of Motion of an N-Link
Manipulator,” Proceedings of the 5th World Congress on the Theory of Machines and
Mechanisms, Montreal, July 1979.

[21] J.M. Hollerbach and G. Sahar, “Wrist-Partitioned Inverse Accelerations and Manipu-
lator Dynamics,” MIT AI Memo No. 717, April 1983.

[22] T.K. Kanade, P.K. Khosla, and N. Tanaka, “Real-Time Control of the CMU Direct
Drive Arm II Using Customized Inverse Dynamics,” Proceedings of the 23rd IEEE
Conference on Decision and Control, Las Vegas, NV, December 1984.

[23] A. Izaguirre and R.P. Paul, “Computation of the Inertial and Gravitational Coefficients
of the Dynamic Equations for a Robot Manipulator with a Load,” Proceedings of the
1985 International Conference on Robotics and Automation, St. Louis, March 1985,
pp. 1024–1032.

[24] B. Armstrong, O. Khatib, and J. Burdick, “The Explicit Dynamic Model and Inertial
Parameters of the PUMA 560 Arm,” Proceedings of the 1986 IEEE International Con-
ference on Robotics and Automation, San Francisco, April 1986, pp. 510–518.

[25] J.W. Burdick, “An Algorithm for Generation of Efficient Manipulator Dynamic Equa-
tions,” Proceedings of the 1986 IEEE International Conference on Robotics and
Automation, San Francisco, April 7–11, 1986, pp. 212–218.

[26] T.R. Kane and D.A. Levinson, “The Use of Kane’s Dynamical Equations in Robotics,”
The International Journal of Robotics Research, Vol. 2, No. 3, Fall 1983, pp. 3–20.

[27] M. Renaud, “An Efficient Iterative Analytical Procedure for Obtaining a Robot
Manipulator Dynamic Model,” First International Symposium of Robotics Research,
NH, August 1983.

[28] W. Schiehlen, “Computer Generation of Equations of Motion,” in Computer Aided
Analysis and Optimization of Mechanical System Dynamics, E.J. Haug, Editor,
Springer-Verlag, Berlin & New York, 1984.



“runall”
2021/5/7
page 214

�

�

�

�

�

�

�

�

214 Chapter 6 Manipulator Dynamics

[29] G. Cesareo, F. Nicolo, and S. Nicosia, “DYMIR: A Code for Generating Dynamic
Model of Robots,” in Advanced Software in Robotics, Elsevier Science Publishers,
North-Holland, 1984.

[30] J. Murray, and C. Neuman, “ARM: An Algebraic Robot Dynamic Modelling Pro-
gram,” IEEE International Conference on Robotics, Atlanta, March 1984.

[31] M. Walker and D. Orin, “Efficient Dynamic Computer Simulation of Robotic Mecha-
nisms,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 104, 1982.

EXERCISES
6.1 [12] Find the inertia tensor of a right cylinder of homogeneous density with respect

to a frame with origin at the center of mass of the body.
6.2 [32] Construct the dynamic equations for the two-link manipulator in Section 6.7

when each link is modeled as a rectangular solid of homogeneous density. Each
link has dimensions li , ωi , and hi and total mass mi .

6.3 [43] Construct the dynamic equations for the three-link manipulator of Chapter 3,
Exercise 3.3. Consider each link to be a rectangular solid of homogeneous density
with dimensions li , ωi , and hi and total mass mi .

6.4 [13] Write the set of equations that correspond to (6.46)–(6.53) for the case where
the mechanism could have sliding joints.

6.5 [30] Construct the dynamic equations for the two-link nonplanar manipulator
shown in Fig. 6.8. Assume that all the mass of the links can be considered as a
point mass located at the distal (outermost) end of the link. The mass values are
m1 and m2, and the link lengths are l1 and l2. This manipulator is like the first two
links of the arm in Exercise 3.3. Assume further that viscous friction is acting at
each joint, with coefficients v1 and v2.

6.6 [32] Derive the Cartesian space form of the dynamics for the two-link planar
manipulator of Section 6.7 in terms of the base frame. Hint: See Example 6.5, but
use the Jacobian written in the base frame.

6.7 [18] How many memory locations would be required to store the dynamic equa-
tions of a general three-link manipulator in a table? Quantize each joint’s position,
velocity, and acceleration into 16 ranges. Make any needed assumptions.

6.8 [32] Derive the dynamic equations for the two-link manipulator shown in Fig. 4.6.
Link 1 has an inertia tensor given by

C1I =
⎡
⎣

Ixx1 0 0
0 Iyy1 0
0 0 Izz1

⎤
⎦ .

l2

θ2

θ1

l1

m2

m1

FIGURE 6.8: Two-link nonplanar manipulator with point masses at distal ends of links.
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Assume that link 2 has all its mass, m2, located at a point at the end-effector.
Assume that gravity is directed downward (opposite Ẑ1).

6.9 [37] Derive the dynamic equations for the three-link manipulator with one pris-
matic joint shown in Fig. 3.9. Link 1 has an inertia tensor given by

C1I =
⎡
⎣

Ixx1 0 0
0 Iyy1 0
0 0 Izz1

⎤
⎦ .

Link 2 has point mass m2 located at the origin of its link frame. Link 3 has an
inertia tensor given by

C3I =
⎡
⎣

Ixx3 0 0
0 Iyy3 0
0 0 Izz3

⎤
⎦ .

Assume that gravity is directed opposite Ẑ1, and that viscous friction of magnitude
vi is active at each joint.

6.10 [35] Derive the dynamic equations in Cartesian space for the manipulator of Exer-
cise 6.8. Write the equations in frame {2}.

6.11 [20] A certain one-link manipulator has

C1I =
⎡
⎣

Ixx1 0 0
0 Iyy1 0
0 0 Izz1

⎤
⎦ .

Assume that this is just the inertia of the link itself. If the motor armature has a
moment of inertia Im, and the gear ratio is 100, what is the total inertia as seen
from the motor shaft [1]?

6.12 [20] The single-degree-of-freedom “manipulator” in Fig. 6.9 has total mass m = 1,
with the center of mass at

1PC =
⎡
⎣

2
0
0

⎤
⎦ ,

and has inertia tensor

CI1 =
⎡
⎣

1 0 0
0 2 0
0 0 2

⎤
⎦ .

X0

Y0

Pcl

θ1

Z0

FIGURE 6.9: One-link “manipulator” of Exercise 6.12.
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From rest at t = 0, the joint angle θ1 moves in accordance with the time function

θ1(t) = bt + ct2

in radians. Give the angular acceleration of the link and the linear acceleration of
the center of mass in terms of frame {1} as a function of t .

6.13 [40] Construct the Cartesian dynamic equations for the two-link nonplanar manip-
ulator shown in Fig. 6.8. Assume that all the mass of the links can be considered
as a point mass located at the distal (outermost) end of the link. The mass values
are m1 and m2, and the link lengths are l1 and l2. This manipulator is like the first
two links of the arm in Exercise 3.3. Also, assume that viscous friction is acting at
each joint with coefficients v1 and v2. Write the Cartesian dynamics in frame {3},
which is located at the tip of the manipulator and has the same orientation as link
frame {2}.

6.14 [18] The following equations were derived for a 2-DOF RP manipulator:

τ1 = m1(d
2
1 + d2)θ̈1 + m2d

2
2 θ̈1 + 2m2d2ḋ2θ̇1

+g cos(θ1)[m1(d1 + d2θ̇1) + m2(d2 + ḋ2)]
τ2 = m1ḋ2θ̈1 + m2d̈2 − m1d1ḋ2 − m2d2θ̇

2 + m2(d2 + 1)g sin(θ1).

Some of the terms are obviously incorrect. Indicate the incorrect terms.
6.15 [28] Derive the dynamic equations for the RP manipulator of Example 6.5, using

the Newton–Euler procedure instead of the Lagrangian technique.
6.16 [25] Derive the equations of motion for the PR manipulator shown in Fig. 6.10.

Neglect friction, but include gravity. (Here, X̂0 is upward.) The inertia tensors of
the links are diagonal, with moments Ixx1, Iyy1, Izz1 and Ixx2, Iyy2, Izz2. The centers
of mass for the links are given by

1PC1 =
⎡
⎣

0
0

−l1

⎤
⎦ ,

2PC2 =
⎡
⎣

0
0
0

⎤
⎦ .

6.17 [40] The velocity-related terms appearing in the manipulator dynamic equation
can be written as a matrix-vector product—that is,

V (�, �̇) = Vm(�, �̇)�̇,

X0 Y2

m1 m2

Z0

X1

X2

Z1

FIGURE 6.10: PR manipulator of Exercise 6.16.
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where the m subscript stands for “matrix form.” Show a relationship exists
between the time derivative of the manipulator mass matrix and Vm(·), namely,

Ṁ(�) = 2Vm(�, �̇) − S,

where S is some skew-symmetric matrix.
6.18 [15] Give two properties that any reasonable friction model (i.e., the term F(�, �̇)

in (6.114)) would possess.
6.19 [28] Complete Exercise 6.5, using Lagrange’s equations.
6.20 [28] Derive the dynamic equations of the 2-DOF manipulator of Section 6.7, using

a Lagrangian formulation.
6.21 [24] Complete Example 6.5 with potential energy being relative to the height at

which the origin of {1} is located. Compare the resulting equations of motion with
(6.88).

6.22 [25] If a third link of length l3 and mass m3 is added to the manipulator in
Section 6.7, and gravity is removed, then find the dynamic equation for the new
joint torque, τ3.

6.23 [30] Construct the dynamic equations for the two-link manipulator shown in
Fig. 6.6, which has the mass center of link 2 at the origin of {2}. The mass center
of link 1 is at its midpoint. The masses and inertia tensors of the links are m1, m2,

c1I1 =
⎡
⎣

IXX1 0 0
0 IYY1 0
0 0 IZZ1

⎤
⎦ , and c2I2 =

⎡
⎣

IXX2 0 0
0 IYY2 0
0 0 IZZ2

⎤
⎦ ,

6.24 [28] A certain rigid body has two attached frames, {A} and {B}, that are related by
a rotation transformation. Find the inertia tensor BI in terms of AI . Hint: Consider
the following relationships for angular velocity, ω, and angular momentum, H .

Bω = B
AR Aω

AH = AI Aω

BH = BI Bω = B
AR AH

6.25 [41] For this exercise, use the following parameters for the two-link manipulator
in Section 6.7 with frames defined as shown in Fig. 4.7.

m1 = 2

m2 = 1

l1 = 4

l2 = 3

It is desired to drive the manipulator by placing a motor of mass 0.1 at the two joint
axes. The motor has a peak-torque limit of 220 and a continuous-torque limit of
160. Let gravitational acceleration be −10Ŷ0.

a) Verify that this motor is suitable if the manipulator is to indefinitely maintain
the pose � = (0, 0).

b) Find the maximum payload (considered a point mass coincident with m2)
if the motors need to provide accelerations up to �̈ = (0.2, 0.4) for brief
periods of time.
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m_c
z

g

mp

l

θ

FIGURE 6.11: Cart and simple pendulum.

6.26 [34] Complete Exercise 6.8 using Lagrange’s equations.
6.27 [27] Using Lagrange’s equations, construct the dynamic equations for the cart and

simple pendulum shown in Fig. 6.11. It comprises a cart of mass mc connected to
a point mass, mp , by a massless rod of length l.

6.28 [26] Viscous friction affects the joints of the manipulator in Exercise 6.25, with
each having the same viscous-friction constant, v = 2. Determine the joint torques
for the following state:

θ = (π/6, π/3)

θ̇ = (0.1, 0.5)

θ̈ = (0.2,−0.25)

6.29 [14] Find the inertia tensor of a right cylindrical-walled tube of homogeneous den-
sity with respect to a frame with origin at the center of mass of the body.

PROGRAMMING EXERCISE (PART 6)

1. Derive the dynamic equations of motion for the three-link manipulator (from
Example 3.3). That is, expand Section 6.7 for the three-link case. The following
numerical values describe the manipulator:

l1 = l2 = 0.5 m,

m1 = 4.6 Kg,

m2 = 2.3 Kg,

m3 = 1.0 Kg,

g = 9.8 m/s2.

For the first two links, we assume that the mass is all concentrated at the distal end
of the link. For link 3, we assume that the center of mass is located at the origin of
frame {3}—that is, at the proximal end of the link. The inertia tensor for link 3 is

CsI =
⎡
⎣

0.05 0 0
0 0.1 0
0 0 0.1

⎤
⎦ Kg-m2.
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The vectors that locate each center of mass relative to the respective link frame are

1PC1 = l1X̂1,

2PC2 = l2X̂2,

3PC3 = 0.

2. Write a simulator for the three-link manipulator. A simple Euler-integration rou-
tine is sufficient for performing the numerical integration (as in Section 6.12). To
keep your code modular, it might be helpful to define the routine

Procedure UPDATE(VAR tau: vec3; VAR period: real; VAR

theta, thetadot: vec3);

where “tau” is the torque command to the manipulator (always zero for this assign-
ment), “period” is the length of time you wish to advance time (in seconds), and
“theta” and “thetadot” are the state of the manipulator. Theta and thetadot are
updated by “period” seconds each time you call UPDATE. Note that “period”
would typically be longer than the integration step size, �t , used in the numerical
integration. For example, although the step size for numerical integration might be
0.001 second, you might wish to print out the manipulator position and velocity
only every 0.1 seconds.
To test your simulation, set the joint-torque commands to zero (for all time) and
perform these tests:

(a) Set the initial position of the manipulator to

[θ1 θ2 θ3] = [−90 0 0].
Simulate for a few seconds. Is the motion of the manipulator what you would
expect?

(b) Set the initial position of the manipulator to

[θ1 θ2 θ3] = [30 30 10].
Simulate for a few seconds. Is the motion of the manipulator what you would
expect?

(c) Introduce some viscous friction at each joint of the simulated manipula-
tor—that is, add a term to the dynamics of each joint in the form τf = vθ̇ ,
where v = 5.0 newton-meter-seconds for each joint. Repeat test (b) above.
Is the motion what you would expect?

MATLAB EXERCISE 6A

This exercise focuses on the inverse-dynamics analysis (in a resolved-rate control frame-
work—see MATLAB Exercise 5) for the planar 2-DOF 2R robot. This robot is the first
two R-joints and first two moving links of the planar 3-DOF 3R robot (see Figures 3.6
and 3.7; the DH parameters are given in the first two rows of Figure 3.8).

For the planar 2R robot, calculate the required joint torques (i.e., solve the inverse-
dynamics problem) to provide the commanded motion at every time step in a resolved-
rate control scheme. You can use either the numerical Newton–Euler recursion or the
analytical equations from the results of Exercise 6.2, or both.
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Given: L1 = 1.0 m, L2 = 0.5 m; Both links are solid steel with mass density ρ =
7806 kg/m3; both have the width and thickness dimensions w = t = 5 cm. The revolute
joints are assumed to be perfect, connecting the links at their very edges (which is not
physically possible).

The initial angles are � =
{
θ1
θ2

}
=

{
10

◦

90
◦

}
.

The (constant) commanded Cartesian velocity is 0Ẋ = 0
{
ẋ

ẏ

}
= 0

{
0

0.5

}
(m/s).

Simulate motion for 1 sec, with a control time step of 0.01 sec.
Present five plots (each set on a separate graph):

1. the two joint angles (degrees) � = {θ1 θ2}T vs. time;
2. the two joint rates (rad/s) �̇ = {θ̇1 θ̇2}T vs. time;

3. the two joint accelerations (rad/s2) �̈ = {θ̈1 θ̈2}T vs. time;

4. the three Cartesian components of 0
HT , X = {x y φ}T (rad is fine for φ so it will

fit) vs. time;
5. the two inverse dynamics joint torques (Nm) T = {τ1 τ2}T vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis names
and units.

Perform this simulation twice. The first time, ignore gravity (the motion plane is
normal to the effect of gravity); the second time, consider gravity g in the negative Y

direction.

MATLAB EXERCISE 6B

This exercise focuses on the inverse-dynamics solution for the planar 3-DOF, 3R robot
(of Figures 3.6 and 3.7; the DH parameters are given in Figure 3.8) for a motion snapshot
in time only. The following fixed-length parameters are given: L1 = 4, L2 = 3, and L3 = 2
(m). For dynamics, we must also be given mass and moment-of-inertia information: m1 =
20, m2 = 15, m3 = 10 (kg), CIZZ1 = 0.5, CIZZ2 = 0.2, and CIZZ3 = 0.1 (kgm2). Assume
that the CG of each link is in its geometric center. Also, assume that gravity acts in the
−Y direction in the plane of motion. For this exercise, ignore actuator dynamics and the
joint gearing.

a) Write a MATLAB program to implement the recursive Newton–Euler inverse-
dynamics solution (i.e., given the commanded motion, calculate the required driv-
ing joint torques) for the following motion snapshot in time:

� =
⎧⎨
⎩

θ1
θ2
θ3

⎫⎬
⎭ =

⎧⎨
⎩

10
◦

20
◦

30
◦

⎫⎬
⎭ �̇ =

⎧⎨
⎩

θ̇1
θ̇2
θ̇3

⎫⎬
⎭ =

⎧⎨
⎩

1
2
3

⎫⎬
⎭ (rad/s)�̈ =

⎧⎨
⎩

θ̈1
θ̈2
θ̈3

⎫⎬
⎭ =

⎧⎨
⎩

0.5
1

1.5

⎫⎬
⎭ (rad/s2)

b) Check your results in (a) by means of the Corke Robotics Toolbox for MATLAB®.
Try the functions rne() and gravload().

MATLAB EXERCISE 6C

This exercise focuses on the forward-dynamics solution for the planar 3-DOF, 3R robot
(parameters from MATLAB Exercise 6B) for motion over time. In this case, ignore grav-
ity (i.e., assume that gravity acts in a direction normal to the plane of motion). Use the
Corke Robotics Toolbox for MATLAB® to solve the forward-dynamics problem (i.e.,
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given the commanded driving joint torques, calculate the resulting robot motion) for the
following constant joint torques, and the given initial joint angles and initial joint rates:

T =
⎧⎨
⎩

τ1
τ2
τ3

⎫⎬
⎭ =

⎧⎨
⎩

20
5
1

⎫⎬
⎭ (Nm, constant) �0 =

⎧⎨
⎩

θ10
θ20
θ30

⎫⎬
⎭ =

⎧⎨
⎩

−60
◦

90
◦

30
◦

⎫⎬
⎭

�̇0 =
⎧⎨
⎩

θ̇10
θ̇20
θ̇30

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (rad/s)

Perform this simulation for 4 seconds. Try function fdyn().
Present two plots for the resulting robot motion (each set on a separate graph):

1. the three joint angles (degrees) � = {θ1 θ2 θ3}T vs. time;
2. the three joint rates (rad/s) �̇ = {θ̇1 θ̇2 θ̇3}T vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis names
and units.
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C H A P T E R 7

Trajectory Generation

7.1 INTRODUCTION
7.2 GENERAL CONSIDERATIONS IN PATH DESCRIPTION AND GENERATION
7.3 JOINT-SPACE SCHEMES
7.4 CARTESIAN-SPACE SCHEMES
7.5 GEOMETRIC PROBLEMS WITH CARTESIAN PATHS
7.6 PATH GENERATION AT RUN TIME
7.7 DESCRIPTION OF PATHS WITH A ROBOT PROGRAMMING LANGUAGE
7.8 PLANNING PATHS WHEN USING THE DYNAMIC MODEL
7.9 COLLISION-FREE PATH PLANNING

7.1 INTRODUCTION

In this chapter, we will concern ourselves with methods of computing a trajectory
that describes the desired motion of a manipulator in multidimensional space. Here,
trajectory refers to a time history of position, velocity, and acceleration for each
degree of freedom.

This problem includes the human-interface problem of how we wish to specify
a trajectory or path through space. In order to make the description of manipulator
motion easy for a human user of a robot system, the user should not be required to
write down complicated functions of space and time to specify the task. Rather, we
must allow the capability of specifying trajectories with simple descriptions of the
desired motion, and let the system figure out the details. For example, the user might
want to be able to specify nothing more than the desired goal position and orientation
of the end-effector, and leave it to the system to decide on the exact shape of the path
to get there, the duration, the velocity profile, and other details.

We also are concerned with how trajectories are represented in the computer
after they have been planned. Finally, there is the problem of actually computing
the trajectory from the internal representation—or generating the trajectory. Gener-
ation occurs at run time; in the most general case, position, velocity, and acceleration
are computed. These trajectories are computed on digital computers, so the trajec-
tory points are computed at a certain rate, called the path-update rate. In typical
manipulator systems, this rate lies between 60 and 2000 Hz.

7.2 GENERAL CONSIDERATIONS IN PATH DESCRIPTION AND GENERATION

For the most part, we will consider motions of a manipulator as motions of the tool
frame, {T }, relative to the station frame, {S}. This is the same manner in which an
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eventual user of the system would think, and designing a path description and gen-
eration system in these terms will result in a few important advantages.

When we specify paths as motions of the tool frame relative to the station
frame, we decouple the motion description from any particular robot, end-effector,
or workpieces. This results in a certain modularity, and would allow the same path
description to be used with a different manipulator—or with the same manipula-
tor, but a different tool size. Further, we can specify and plan motions relative to a
moving workstation (perhaps a conveyor belt) by planning motions relative to the
station frame as always and, at run time, causing the definition of {S} to be changing
with time.

As shown in Fig. 7.1, the basic problem is to move the manipulator from an
initial position to some desired final position—that is, we wish to move the tool frame
from its current value, {Tinitial}, to a desired final value, {Tfinal}. Note that, in general,
this motion involves both a change in orientation, and a change in the position of the
tool relative to the station.

Sometimes, it is necessary to specify the motion in much more detail than by
simply stating the desired final configuration. One way to include more detail in a path
description is to give a sequence of desired via points (intermediate points between
the initial and final positions). Thus, in completing the motion, the tool frame must
pass through a set of intermediate positions and orientations as described by the via
points. Each of these via points is actually a frame that specifies both the position
and orientation of the tool relative to the station. The name path points includes all
the via points as well as, the initial and final points. Remember that, although we
generally use the term “points,” these are actually frames, which give both position
and orientation. Along with these spatial constraints on the motion, the user could
also wish to specify temporal attributes of the motion. For example, the time elapsed
between via points might be specified in the description of the path.

Usually, it is desirable for the motion of the manipulator to be smooth. For our
purposes, we will define a smooth function as a function that is continuous and has a

FIGURE 7.1: In executing a trajectory, a manipulator moves from its initial position to
a desired goal position in a smooth manner.
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continuous first derivative. Sometimes a continuous second derivative is also desir-
able. Rough, jerky motions tend to cause increased wear on the mechanism, and
cause vibrations by exciting resonances in the manipulator. In order to guarantee
smooth paths, we must put some sort of constraints on the spatial and temporal qual-
ities of the path between the via points.

At this point, there are many choices that may be made and, consequently, a
great variety in the ways that paths might be specified and planned. Any smooth func-
tions of time that pass through the via points could be used to specify the exact path
shape. In this chapter, we will discuss a couple of simple choices for these functions.
Other approaches can be found in [1, 2] and [13–16].

7.3 JOINT-SPACE SCHEMES

In this section, we will consider methods of path generation in which the path shapes
(in space and in time) are described in terms of functions of joint angles.

Each path point is usually specified in terms of a desired position and ori-
entation of the tool frame, {T }, relative to the station frame, {S}. Each of these
via points is “converted” into a set of desired joint angles by application of the
inverse kinematics. Then, a smooth function is found for each of the n joints that
pass through the via points and end at the goal point. The time required for each seg-
ment is the same for each joint so that all joints will reach the via point at the same
time, thus resulting in the desired Cartesian position of {T } at each via point. Other
than specifying the same duration for each joint, the determination of the desired
joint angle function for a particular joint does not depend on the functions for the
other joints.

Hence, joint-space schemes achieve the desired position and orientation at the
via points. In between via points, the shape of the path, although rather simple in joint
space, is complex if described in Cartesian space. Joint-space schemes are usually the
easiest to compute, and, because we make no continuous correspondence between
joint space and Cartesian space, there is essentially no problem with singularities of
the mechanism.

Cubic Polynomials

Consider the problem of moving the tool from its initial position to a goal position
in a certain amount of time. Inverse kinematics allow the set of joint angles that
correspond to the goal position and orientation to be calculated. The initial position
of the manipulator is also known in the form of a set of joint angles. What is required
is a function for each joint whose value at t0 is the initial position of the joint, and
whose value at tf is the desired goal position of that joint. As shown in Fig. 7.2, there
are many smooth functions, θ(t), that might be used to interpolate the joint value.

In making a single smooth motion, at least four constraints on θ(t) are evi-
dent. Two constraints on the function’s value come from the selection of initial and
final values:

θ(0) = θ0,

θ(tf ) = θf . (7.1)
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θ(t)

θf

θ0

t
tft0

FIGURE 7.2: Several possible path shapes for a single joint.

An additional two constraints are that the function be continuous in velocity, which
in this case means that the initial and final velocity are zero:

θ̇ (0) = 0,

θ̇ (tf ) = 0. (7.2)

These four constraints can be satisfied by a polynomial of at least third degree.
(A cubic polynomial has four coefficients, so it can be made to satisfy the four con-
straints given by (7.1) and (7.2).) These constraints uniquely specify a particular
cubic. A cubic has the form

θ(t) = a0 + a1t + a2t
2 + a3t

3, (7.3)

so the joint velocity and acceleration along this path are clearly

θ̇ (t) = a1 + 2a2t + 3a3t
2,

θ̈ (t) = 2a2 + 6a3t. (7.4)

Combining (7.3) and (7.4) with the four desired constraints yields four equations in
four unknowns:

θ0 = a0,

θf = a0 + a1tf + a2t
2
f + a3t

3
f ,

0 = a1, (7.5)

0 = a1 + 2a2tf + 3a3t
2
f .

Solving these equations for the ai , we obtain

a0 = θ0,

a1 = 0,
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a2 = 3

t2
f

(θf − θ0), (7.6)

a3 = − 2

t3
f

(θf − θ0).

Using (7.6), we can calculate the cubic polynomial that connects any initial joint-
angle position with any desired final position. This solution is for the case when the
joint starts and finishes at zero velocity.

EXAMPLE 7.1

A single-link robot with a rotary joint is motionless at θ = 15 degrees. It is desired to
move the joint in a smooth manner to θ = 75 degrees in 3 seconds. Find the coeffi-
cients of a cubic that accomplishes this motion and brings the manipulator to rest at
the goal. Plot the position, velocity, and acceleration of the joint as a function of time.

Substituting into (7.6), we find that

a0 = 15.0,

a1 = 0.0,

a2 = 20.0, (7.7)

a3 = −4.44.

Using (7.3) and (7.4), we obtain

θ(t) = 15.0 + 20.0t2 − 4.44t3,

θ̇ (t) = 40.0t − 13.33t2, (7.8)

θ̈ (t) = 40.0 − 26.66t.

Figure 7.3 shows the position, velocity, and acceleration functions for this motion
sampled at 40 Hz. Note that the velocity profile for any cubic function is a parabola,
and that the acceleration profile is linear.

Cubic Polynomials for a Path with via Points

So far, we have considered motions described by a desired duration and a final goal
point. In general, we wish to allow paths to be specified that include intermediate via
points. If the manipulator is to come to rest at each via point, then we can use the
cubic solution of Section 7.3.

Usually, we wish to be able to pass through a via point without stopping so we
need to generalize the way in which we fit cubics to the path constraints.

As in the case of a single goal point, each via point is usually specified in terms
of a desired position and orientation of the tool frame relative to the station frame.
Each of these via points is “converted” into a set of desired joint angles by application
of the inverse kinematics. We then consider the problem of computing cubics that
connect the via points for each joint together in a smooth way.
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FIGURE 7.3: Position, velocity, and acceleration profiles for a single cubic segment that
starts and ends at rest.

If desired velocities of the joints at the via points are known, then we can con-
struct cubic polynomials as before; now, however, the velocity constraints at each
end are not zero, but rather, some known velocity. The constraints of (7.3) become

θ̇ (0) = θ̇0,

θ̇ (tf ) = θ̇f . (7.9)
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The four equations describing this general cubic polynomial are

θ0 = a0,

θf = a0 + a1tf + a2t
2
f + a3t

3
f ,

θ̇0 = a1, (7.10)

θ̇f = a1 + 2a2tf + 3a3t
2
f .

Solving these equations for the ai , we obtain

a0 = θ0,

a1 = θ̇0,

a2 = 3

t2
f

(θf − θ0) − 2
tf

θ̇0 − 1
tf

θ̇f , (7.11)

a3 = − 2

t3
f

(θf − θ0) + 1

t2
f

(θ̇f + θ̇0).

Using (7.11), we can calculate the cubic polynomial that connects any initial and final
positions, with any initial and final velocities.

If we have the desired joint velocities at each via point, then we simply apply
(7.11) to each segment to find the required cubics. There are several ways in which
the desired velocity at the via points might be specified:

1. The user specifies the desired velocity at each via point in terms of a Cartesian
linear and angular velocity of the tool frame at that instant.

2. The system automatically chooses the velocities at the via points by applying a
suitable heuristic in either Cartesian space or joint space.

3. The system automatically chooses the velocities at the via points in such a way
as to cause the acceleration at the via points to be continuous.

In the first option, Cartesian desired velocities at the via points are “mapped”
to desired joint rates by using the inverse Jacobian of the manipulator evaluated
at the via point. If the manipulator is at a singular point at a particular via point,
then the user is not free to assign an arbitrary velocity at this point. It is a useful
capability of a path-generation scheme to be able to meet a desired velocity that the
user specifies, but it would be a burden to require that the user always make these
specifications. Therefore, a convenient system should include either option 2 or 3
(or both).

In option 2, the system automatically chooses reasonable intermediate veloci-
ties, using some kind of heuristic. Consider the path specified by the via points shown
for some joint, θ , in Fig. 7.4.

In Fig. 7.4, we have made a reasonable choice of joint velocities at the via points,
as indicated with small line segments representing tangents to the curve at each via
point. This choice is the result of applying a conceptually and computationally simple
heuristic. Imagine the via points connected with straight line segments. If the slope
of these lines changes sign at the via point, choose zero velocity; if the slope of these
lines does not change sign, choose the average of the two slopes as the via velocity.
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θB

θC

θD

θ0

θA

t
t0 tA tB tC tD

FIGURE 7.4: Via points with desired velocities at the points indicated by tangents.

In this way, from specification of the desired via points alone, the system can choose
the velocity at each point.

In option 3, the system chooses velocities in such a way that acceleration is
continuous at the via point. To do this, a new approach is needed. In this kind of
spline, set of data1 we replace the two velocity constraints at the connection of two
cubics with the two constraints that velocity be continuous and acceleration be
continuous.

EXAMPLE 7.2

Solve for the coefficients of two cubics that are connected in a two-segment spline
with continuous acceleration at the intermediate via point. The initial angle is θ0, the
via point is θυ , and the goal point is θg .

The first cubic is

θ(t) = a10 + a11t + a12t
2 + a13t

3, (7.12)

and the second is
θ(t) = a20 + a21t + a22t

2 + a23t
3. (7.13)

Each cubic will be evaluated over an interval starting at t = 0 and ending at t = tfi,
where i = 1 or i = 2.

The constraints we wish to enforce are

θ0 = a10,

θυ = a10 + a11tf 1 + a12t
2
f 1 + a13t

3
f 1,

θυ = a20,

θg = a20 + a21tf 2 + a22t
2
f 2 + a23t

3
f 2, (7.14)

0 = a11,

1In our usage, the term “spline” simply means a function of time.
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0 = a21 + 2a22tf 2 + 3a23t
2
f 2,

a11 + 2a12tf 1 + 3a12t
2
f 1 = a21,

2a12 + 6a13tf 1 = 2a22.

These constraints specify a linear-equation problem having eight equations and eight
unknowns. Solving for the case tf = tf 1 = tf 2, we obtain

a10 = θ0,

a11 = 0,

a12 = 12θυ − 3θg − 9θ0

4t2
f

,

a13 = −8θυ + 3θg + 5θ0

4t3
f

,

a20 = θυ, (7.15)

a21 = 3θg − 3θ0

4tf
,

a22 = −12θυ + 6θg + 6θ0

4t2
f

,

a23 = 8θυ − 5θg − 3θ0

4t3
f

.

For the general case, involving n cubic segments, the equations that arise from
insisting on continuous acceleration at the via points can be cast in matrix form,
which is solved to compute the velocities at the via points. The matrix turns out to
be tridiagonal and easily solved [4].

Higher-Order Polynomials

Higher-order polynomials are sometimes used for path segments. For example, if we
wish to be able to specify the position, velocity, and acceleration at the beginning
and end of a path segment, a quintic polynomial is required, namely,

θ(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5, (7.16)

where the constraints are given as

θ0 = a0,

θf = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f ,

θ̇0 = a1,

θ̇f = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f , (7.17)
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θ̈0 = 2a2,

θ̈f = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f .

These constraints specify a linear set of six equations with six unknowns, whose
solution is

a0 = θ0,

a1 = θ̇0,

a2 = θ̈0

2
,

a3 = 20θf − 20θ0 − (8θ̇f + 12θ̇0)tf − (3θ̈0 − θ̈f )t2
f

2t3
f

, (7.18)

a4 = 30θ0 − 30θf + (14θ̇f + 16θ̇0)tf + (3θ̈0 − 2θ̈f )t2
f

2t4
f

,

a5 = 12θf − 12θ0 − (6θ̇f + 6θ̇0)tf − (θ̈0 − θ̈f )t2
f

2t5
f

.

Various algorithms are available for computing smooth functions (polynomial
or otherwise) that pass through a given set of data points [3, 4]. Complete coverage
is beyond the scope of this book.

Linear Function with Parabolic Blends

Another choice of path shape is linear. That is, we simply interpolate linearly to move
from the present joint position to the final position, as in Fig. 7.5. Remember that,
although the motion of each joint in this scheme is linear, the end-effector generally
does not move in a straight line in space.

However, straightforward linear interpolation would cause the velocity to be
discontinuous at the beginning and end of the motion. To create a smooth path

θ

θf

θ0

t
tft0

FIGURE 7.5: Linear interpolation requiring infinite acceleration.
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with continuous position and velocity, we start with the linear function, but add a
parabolic blend region at each path point.

During the blend portion of the trajectory, constant acceleration is used to
smoothly change velocity. Figure 7.6 shows a simple path constructed in this way.
The linear function and the two parabolic functions are “splined” together so that
the entire path is continuous in position and velocity.

In order to construct this single segment, we will assume that the parabolic
blends both have the same duration; therefore, the same constant acceleration
(modulo a sign) is used during both blends. As indicated in Fig. 7.7, there are many
solutions to the problem—but note that the answer is always symmetric about the
halfway point in time, th, and about the halfway point in position, θh. The velocity
at the end of the blend region must equal the velocity of the linear section, and so
we have

θ̈ tb = θh − θb

th − tb
, (7.19)

where θb is the value of θ at the end of the blend region, and θ̈ is the acceleration
acting during the blend region. The value of θb is given by

θb = θ0 + 1
2 θ̈ t2

b . (7.20)

θ

θf

θ0

t
tft0 tb tf  2 tb

FIGURE 7.6: Linear segment with parabolic blends.

θ

θf

θh

θ0

t
tft0 th

FIGURE 7.7: Linear segment with parabolic blends.
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Combining (7.19) and (7.20) and t = 2th, we get

θ̈ t2
b − θ̈ t tb + (θf − θ0) = 0, (7.21)

where t is the desired duration of the motion. Given any θf , θ0, and t , we can follow
any of the paths given by the choices of θ̈ and tb that satisfy (7.21). Usually, an accel-
eration, θ̈ , is chosen, and (7.21) is solved for the corresponding tb. The acceleration
chosen must be sufficiently high, or a solution will not exist. Solving (7.21) for tb in
terms of the acceleration and other known parameters, we obtain

tb = t

2
−

√
θ̈2t2 − 4θ̈ (θf − θ0)

2θ̈
. (7.22)

The constraint on the acceleration used in the blend is

θ̈ ≥ 4(θf − θ0)

t2 . (7.23)

When equality occurs in (7.23) the linear portion has shrunk to zero length, and the
path is composed of two blends that connect with equivalent slope. As the accelera-
tion used becomes larger and larger, the length of the blend region becomes shorter
and shorter. In the limit, with infinite acceleration, we are back to the simple linear-
interpolation case.

EXAMPLE 7.3

For the same single-segment path discussed in Example 7.1, show two examples of a
linear path with parabolic blends.

Figure 7.8(a) shows one possibility where θ̈ was chosen quite high. In this
case, we quickly accelerate, then coast at constant velocity, and then decelerate.
Figure 7.8(b) shows a trajectory where acceleration is kept quite low, so the linear
section almost disappears.

Linear Function with Parabolic Blends for a Path with via Points

We will now consider linear paths with parabolic blends for the case in which there
are an arbitrary number of via points specified. Figure 7.9 shows a set of joint-space
via points for some joint θ . Linear functions connect the via points, and parabolic
blend regions are added around each via point.

We will use the following notation: Consider three neighboring path points,
which we will call points j , k, and l. The duration of the blend region at path point
k is tk . The duration of the linear portion between points j and k is tjk. The overall
duration of the segment connecting points j and k is tdjk. The velocity during the
linear portion is θ̇jk, and the acceleration during the blend at point j is θ̈j . See Fig. 7.9
for an example.

As with the single-segment case, there are many possible solutions, depending
on the value of acceleration used at each blend. Given all the path points θk , the
desired durations tdjk, and the magnitude of acceleration to use at each path point
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FIGURE 7.8: Position, velocity, and acceleration profiles for linear interpolation with
parabolic blends. The set of curves on the left is based on a higher acceleration during
the blends than is that on the right.

|θ̈k|, we can compute the blend times tk . For interior path points, this follows simply
from the equations

θ̇jk = θk − θj

tdjk

,

θ̈k = SGN(θ̇kl − θ̇jk)|θ̈k|,

tk = θ̇kl − θ̇jk

θ̈k

, (7.24)

tjk = tdjk − 1
2
tj − 1

2
tk.
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FIGURE 7.9: Multisegment linear path with blends.

The first and last segments must be handled slightly differently, because an entire
blend region at one end of the segment must be counted in the total segment’s
time duration.

For the first segment, we solve for t1 by equating two expressions for the
velocity during the linear phase of the segment:

θ2 − θ1

td12 − 1
2 t1

= θ̈1t1. (7.25)

This can be solved for t1, the blend time at the initial point; then θ̇12 and t12 are easily
computed:

θ̈1 = SGN(θ2 − θ1)|θ̈1|,

t1 = td12 −
√

t2
d12 − 2(θ2 − θ1)

θ̈1
,

θ̇12 = θ2 − θ1

td12 − 1
2 t1

, (7.26)

t12 = td12 − t1 − 1
2
t2.

Likewise, for the last segment (the one connecting points n − 1 and n), we have
θn−1 − θn

td(n−1)n − 1
2 tn

= θ̈ntn, (7.27)

which leads to the solution

θ̈n = SGN(θn−1 − θn)|θ̈n|,

tn = td(n−1)n −
√

t2
d(n−1)n

+ 2(θn − θn−1)

θ̈n

,
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θ̇(n−1)n = θn − θn−1

td(n−1)n − 1
2 tn

, (7.28)

t(n−1)n = td(n−1)n − tn − 1
2
tn−1.

Using (7.24) through (7.28), we can solve for the blend times and velocities for
a multisegment path. Usually, the user specifies only the via points and the desired
duration of the segments. In this case, the system uses default values for accelera-
tion for each joint. Sometimes, to make things even simpler for the user, the system
will calculate durations based on default velocities. At all blends, sufficiently large
acceleration must be used so there is sufficient time to get into the linear portion of
the segment before the next blend region starts.

EXAMPLE 7.4

The trajectory of a particular joint is specified as follows: Path points in degrees:
10, 35, 25, 10. The duration of these three segments should be 2, 1, and 3 seconds,
respectively. The magnitude of the default acceleration to use at all blend points is
50 degrees/second2. Calculate all segment velocities, blend times, and linear times.

For the first segment, we apply (7.26) to find

θ̈1 = 50.0. (7.29)

Applying (7.26) to calculate the blend time at the initial point, we get

t1 = 2 −
√

4 − 2(35 − 10)

50.0
= 0.27. (7.30)

The velocity, θ̇12, is calculated from (7.26) as

θ̇12 = 35 − 10
2 − 0.5(0.27)

= 13.50. (7.31)

The velocity, θ̇23, is calculated from (7.24) as

θ̇23 = 25 − 35
1

= −10.0. (7.32)

Next, we apply (7.24) to find
θ̈2 = −50.0. (7.33)

Then, t2 is calculated from (7.24), and we get

t2 = −10.0 − 13.50
−50.0

= 0.47. (7.34)

The linear-portion length of segment 1 is then calculated from (7.26):

t12 = 2 − 0.27 − 1
2 (0.47) = 1.50. (7.35)

Next, from (7.29), we have
θ̈4 = 50.0. (7.36)
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So, for the last segment, (7.28) is used to compute t4, and we have

t4 = 3 −
√

9 + 2(10 − 25)

50.0
= 0.102. (7.37)

The velocity, θ̇34, is calculated from (7.28) as

θ̇34 = 10 − 25
3 − 0.050

= −5.10. (7.38)

Next, (7.24) is used to obtain

θ̈3 = 50.0. (7.39)

Then, t3 is calculated from (7.24):

t3 = −5.10 − (−10.0)

50
= 0.098. (7.40)

Finally, from (7.24), we compute

t23 = 1 − 1
2 (0.47) − 1

2 (0.098) = 0.716, (7.41)

t34 = 3 − 1
2 (0.098) − 0.012 = 2.849. (7.42)

The results of these computations constitute a “plan” for the trajectory. At execution
time, these numbers would be used by the path generator to compute values of θ, θ̇ ,
and θ̈ at the path-update rate.

In these linear-parabolic-blend splines, note that the via points are not actually
reached unless the manipulator comes to a stop. Often, when acceleration capability
is sufficiently high, the paths will come quite close to the desired via point. If we wish
to actually pass through a point, by coming to a stop, the via point is simply repeated
in the path specification.

If the user wishes to specify that the manipulator pass exactly through a via
point without stopping, this specification can be accommodated by using the same
formulation as before, but with the following addition: The system automatically
replaces the via point through which we wish the manipulator to pass with two pseudo
via points, one on each side of the original (as in Fig. 7.10). Then path generation
takes place as before. The original via point will now lie in the linear region of the
path connecting the two pseudo via points. In addition to requesting that the manip-
ulator pass exactly through a via point, the user can also request that it pass through
with a certain velocity. If the user does not specify this velocity, the system chooses
it by means of a suitable heuristic. The term through point might be used (rather
than via point) to specify a path point through which we force the manipulator to
pass exactly.

7.4 CARTESIAN-SPACE SCHEMES

As was mentioned in Section 7.3, paths computed in joint space can ensure that via
and goal points are attained, even when these path points were specified by means of
Cartesian frames. However, the spatial shape of the path taken by the end-effector
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θ

Pseudo via points

Original via

t
t1 t2 t3

FIGURE 7.10: Use of pseudo via points to create a through point.

is not a straight line through space; rather, it is some complicated shape that depends
on the particular kinematics of the manipulator being used. In this section, we will
consider methods of path generation in which the path shapes are described in terms
of functions that compute Cartesian position and orientation as functions of time. In
this way, we can also specify the spatial shape of the path between path points. The
most common path shape is a straight line, but circular, sinusoidal, or other path
shapes could be used.

Each path point is usually specified in terms of a desired position and the
orientation of the tool frame relative to the station frame. In Cartesian-based
path-generation schemes, the functions splined together to form a trajectory are
functions of time that represent Cartesian variables. These paths can be planned
directly from the user’s definition of path points, which are {T } specifications
relative to {S}, without first performing inverse kinematics. However, Cartesian
schemes are more computationally expensive to execute, because, at run time,
inverse kinematics must be solved at the path-update rate—that is, after the path
is generated in Cartesian space, as a last step, the inverse kinematic calculation is
performed to calculate desired joint angles.

Several schemes for generating Cartesian paths have been proposed in liter-
ature from the research and industrial robotics community [1, 2]. In the following
section, we will introduce one scheme as an example. In this scheme, we are able to
use the same linear/parabolic spliner that we developed for the joint-space case.

Cartesian Straight-Line Motion

Often, we would like to be able to easily specify a spatial path that causes the tip of
the tool to move through space in a straight line. Obviously, if we specify many closely
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separated via points lying on a straight line, then the tool tip will appear to follow a
straight line, regardless of the choice of smooth function that interconnects the via
points. However, it is much more convenient if the tool follows straight-line paths
between even widely separated via points. This mode of path specification and exe-
cution is called Cartesian straight-line motion. Defining motions in terms of straight
lines is a subset of the more general capability of Cartesian motion, in which arbi-
trary functions of Cartesian variables as functions of time could be used to specify a
path. In a system that allowed general Cartesian motion, such path shapes as ellipses
or sinusoids could be executed.

In planning and generating Cartesian straight-line paths, a spline of linear func-
tions with parabolic blends is appropriate. During the linear portion of each segment,
all three components of position change in a linear fashion, and the end-effector will
move along a linear path in space. However, if we are specifying the orientation
as a rotation matrix at each via point, we cannot linearly interpolate its elements,
because doing so would not necessarily result in a valid rotation matrix at all times.
A rotation matrix must be composed of orthonormal columns, and this condition
would not be guaranteed if it were constructed by linear interpolation of matrix
elements between two valid matrices. Instead, we will use another representation
of orientation.

As stated in Chapter 2, the so-called angle–axis representation can be used
to specify an orientation with three numbers. If we combine this representation of
orientation with the 3 × 1 Cartesian-position representation, we have a 6 × 1 repre-
sentation of Cartesian position and orientation. Consider a via point specified rel-
ative to the station frame as S

AT . That is, the frame {A} specifies a via point with
position of the end-effector given by SPAORG, and orientation of the end-effector
given by S

AR. This rotation matrix can be converted to the angle–axis representa-
tion ROT(SK̂A, θSA)—or, simply, SKA. We will use the symbol χ to represent this
6 × 1 vector of Cartesian position and orientation. Thus, we have

SχA =
[

SPAORG
SKA

]
, (7.43)

where SKA is formed by scaling the unit vector SK̂A by the amount of rotation, θSA.
If every path point is specified in this representation, we then need to describe spline
functions that smoothly vary these six quantities from path point to path point as
functions of time. If linear splines with parabolic blends are used, the path shape
between via points will be linear. When via points are passed, the linear and angular
velocity of the end-effector are changed smoothly.

Note that, unlike some other Cartesian-straight-line-motion schemes that have
been proposed, this method does not guarantee that rotations occur about a single
“equivalent axis” in moving from point to point. Rather, our scheme is a simple one
that provides smooth orientation changes, and allows the use of the same mathemat-
ics we have already developed for planning joint-interpolated trajectories.

One slight complication arises from the fact that the angle–axis representation
of orientation is not unique—that is,

(SK̂A, θSA) = (SK̂A, θSA + n360◦), (7.44)
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SKA
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FIGURE 7.11: Choosing angle–axis representation to minimize rotation.

where n is any positive or negative integer. In going from a via point {A} to a via point
{B}, the total amount of rotation should be minimized. If our representation of the
orientation of {A} is given as SKA, we must choose the particular SKB such that |SKB −
SKA| is minimized. For example, Fig. 7.11 shows four different possible SKB ’s and
their relation to the given SKA. The difference vectors (broken lines) are compared
to learn which SKB which will result in minimum rotation—in this case, SKB(−1).

Once we select the six values of χ for each via point, we can use the same
mathematics we have already developed for generating splines that are composed of
linear and parabolic sections. However, we must add one more constraint: The blend
times for each degree of freedom must be the same. This will ensure that the resultant
motion of all the degrees of freedom will be a straight line in space. Because all
blend times must be the same, the acceleration used during the blend for each degree
of freedom will differ. Hence, we specify a duration of blend, and, using (7.24), we
compute the needed acceleration (instead of the other way around). The blend time
can be chosen so that a certain upper bound on acceleration is not exceeded.

Many other schemes for representing and interpolating the orientation por-
tion of a Cartesian path can be used. Among these are the use of some of the other
3 × 1 representations of orientation introduced in Section 2.8. For example, some
industrial robots move along Cartesian straight-line paths in which interpolation of
orientation is done by means of a representation similar to Z–Y–Z Euler angles.

7.5 GEOMETRIC PROBLEMS WITH CARTESIAN PATHS

Because a continuous correspondence is made between a path shape described in
Cartesian space and joint positions, Cartesian paths are prone to various problems
relating to workspace and singularities.
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B

A

FIGURE 7.12: Cartesian-path problem of type 1.

Problems of Type 1: Intermediate Points Unreachable

Although the initial location of the manipulator and the final goal point are both
within the manipulator workspace, it is possible that not all points lying on a straight
line connecting these two points are in the workspace. As an example, consider
the planar two-link robot shown in Fig. 7.12, and its associated workspace. In this
case, link 2 is shorter than link 1, so the workspace contains a hole in the middle
whose radius is the difference between link lengths. Drawn on the workspace is a
start point A and a goal point B. Moving from A to B would be no problem in
joint space, but if a Cartesian straight-line motion were attempted, intermediate
points along the path would not be reachable. This is an example of a situation in
which a joint-space path could easily be executed, but a Cartesian straight-line path
would fail.2

Problems of Type 2: High Joint Rates Near Singularity

We saw in Chapter 5 that there are locations in the manipulator’s workspace where
it is impossible to choose finite joint rates that yield the desired velocity of the end-
effector in Cartesian space. It should not be surprising, therefore, that there are
certain paths (described in Cartesian terms) which are impossible for the manipu-
lator to perform. If, for example, a manipulator is following a Cartesian straight-line
path and approaches a singular configuration of the mechanism, one or more joint
velocities might increase toward infinity. Because velocities of the mechanism are

2Some robot systems would notify the user of a problem before moving the manipulator; in others,
motion would start along the path until some joint reached its limit, at which time manipulator motion
would be halted.
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A

B

FIGURE 7.13: Cartesian-path problem of type 2.

upper bounded, this situation usually results in the manipulator’s deviating from the
desired path.

As an example, Fig. 7.13 shows a planar two-link (with equal link lengths) mov-
ing along a path from point A to point B. The desired trajectory is to move the end
tip of the manipulator at constant linear velocity along the straight-line path. In the
figure, several intermediate positions of the manipulator have been drawn to help
visualize its motion. All points along the path are reachable, but as the robot goes
past the middle portion of the path, the velocity of joint one is very high. The closer
the path comes to the joint-one axis, the faster this rate will be. One approach is to
scale down the overall velocity of the path to a speed where all joints stay within their
velocity capabilities. In this way, the desired temporal attributes of the path might be
lost, but at least the spatial aspect of the trajectory definition is adhered to.

Problems of Type 3: Start and Goal Reachable in Different Solutions

A third kind of problem that could arise is shown in Fig. 7.14. Here, a planar two-
link with equal link lengths has joint limits that restrict the number of solutions with
which it can reach a given point in space. In particular, a problem will arise if the goal
point cannot be reached in the same physical solution as the robot is in at the start
point. In Fig. 7.14, the manipulator can reach all points of the path in some solution,
but not in any one solution. In this situation, the manipulator trajectory planning
system can detect this problem without ever attempting to move the robot along the
path, and can signal an error to the user.

To handle these problems with paths specified in Cartesian space, most indus-
trial manipulator-control systems support both joint-space and Cartesian-space path
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A B

FIGURE 7.14: Cartesian-path problem of type 3.

generation. The user quickly learns that, because of the difficulties with Cartesian
paths, joint-space paths should be used as the default. Cartesian-space paths should
be used only when actually needed by the application.

7.6 PATH GENERATION AT RUN TIME

At run time, the path-generator routine constructs the trajectory, usually in terms of
θ, θ̇ , and θ̈ , and feeds this information to the manipulator’s control system. This path
generator computes the trajectory at the path-update rate.

Generation of Joint-Space Paths

The result of having planned a path by using any of the splining methods mentioned
in Section 7.3 is a set of data for each segment of the trajectory. These data are used
by the path generator at run time to calculate θ, θ̇ , and θ̈ .

In the case of cubic splines, the path generator simply computes (7.3) as t is
advanced. When the end of one segment is reached, a new set of cubic coefficients is
recalled, t is set back to zero, and the generation continues.

In the case of linear splines with parabolic blends, the value of time, t , is checked
on each update to determine whether we are currently in the linear or the blend por-
tion of the segment. In the linear portion, the trajectory for each joint is calculated as

θ = θj + θ̇jkt,

θ̇ = θ̇jk, (7.45)

θ̈ = 0,
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where t is the time since the j th via point and θ̇jk was calculated at path-planning
time from (7.24). In the blend region, the trajectory for each joint is calculated as

tinb = t − ( 1
2 tj + tjk),

θ = θj + θ̇jk(t − tinb) + 1
2 θ̈kt

2
inb, (7.46)

θ̇ = θ̇jk + θ̈ktinb,

θ̈ = θ̈k,

where θ̇jk, θ̈k, tj , and tjk were calculated at path-planning time by equations (7.24)
through (7.28). This continues, with t being reset to 1

2 tk when a new linear segment
is entered, until we have worked our way through all the data sets representing the
path segments.

Generation of Cartesian-Space Paths

For the Cartesian-path scheme presented in Section 7.4, we use the path generator
for the linear spline with parabolic blends path. However, the values computed rep-
resent the Cartesian position and orientation rather than joint-variable values, so we
rewrite (7.45) and (7.46) with the symbol x representing a component of the Carte-
sian position and orientation vector. In the linear portion of the segment, each degree
of freedom in χ is calculated as

x = xj + ẋjkt,

ẋ = ẋjk, (7.47)

ẍ = 0,

where t is the time since the j th via point and ẋjk was calculated at path-planning
time by using an equation analogous to (7.24). In the blend region, the trajectory for
each degree of freedom is calculated as

tinb = t − ( 1
2 tj + tjk),

x = xj + ẋjk(t − tinb) + 1
2 ẍkt

2
inb, (7.48)

ẋ = ẋjk + ẍktinb,

ẍ = ẍk,

where the quantities ẋjk, ẍk, tj , and tjk were computed at plan time, just as in the
joint-space case.

Finally, this Cartesian trajectory (χ, χ̇ , and χ̈) must be converted into equiva-
lent joint-space quantities. A complete analytical solution to this problem would use
the inverse kinematics to calculate joint positions, the inverse Jacobian for velocities,
and the inverse Jacobian plus its derivative for accelerations [5]. A simpler way often
used in practice is as follows: At the path-update rate, we convert χ into its equiv-
alent frame representation, S

GT . We then use the SOLVE routine (see Section 4.8)
to calculate the required vector of joint angles, �. Numerical differentiation is then
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used to compute �̇ and �̈.3 Thus, the algorithm is

χ → S
GT ,

�(t) = SOLVE( S
GT ),

�̇(t) = �(t) − �(t − δt)

δt
, (7.49)

�̈(t) = �̇(t) − �̇(t − δt)

δt
.

Then �, �̇, and �̈ are supplied to the manipulator’s control system.

7.7 DESCRIPTION OF PATHS WITH A ROBOT PROGRAMMING LANGUAGE

In Chapter 12, we will discuss robot programming languages further. Here, we will
illustrate how various types of paths that we have discussed in this chapter might be
specified in a robot language. In these examples, we use the syntax of AL, a robot
programming language developed at Stanford University [6].

The symbols A, B, C, and D stand for variables of type “frame” in the
AL-language examples that follow. These frames specify path points that we will
assume to have been taught or textually described to the system. Assume that the
manipulator begins in position A. To move the manipulator in joint-space mode
along linear-parabolic-blend paths, we could say

move ARM to C with duration = 3*seconds;
To move to the same position and orientation in a straight line, we could say

move ARM to C linearly with duration = 3*seconds;
where the keyword “linearly” denotes that Cartesian straight-line motion is to be
used. If duration is not important, the user can omit this specification, and the system
will use a default velocity—that is,

move ARM to C;
A via point can be added, and we can write

move ARM to C via B;
or a whole set of via points might be specified by

move ARM to C via B,A,D;
Note that in
move ARM to C via B with duration = 6*seconds;

the duration is given for the entire motion. The system decides how to split this dura-
tion between the two segments. It is possible in AL to specify the duration of a single
segment—for example, by

move ARM to C via B where duration = 3*seconds;
The first segment which leads to point B will have a duration of 3 seconds.

7.8 PLANNING PATHS WHEN USING THE DYNAMIC MODEL

Usually, when paths are planned, we use a default or a maximum acceleration at each
blend point. Actually, the amount of acceleration that the manipulator is capable

3This differentiation can be done noncausally for preplanned paths, resulting in better-quality �̇ and
�̈. Also, many control systems do not require a �̈ input, so it would not be computed.
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of at any instant is a function of the dynamics of the arm and the actuator limits.
Most actuators are not characterized by a fixed maximum torque or acceleration,
but rather by a torque–speed curve.

When we plan a path assuming there is a maximum acceleration at each joint
or along each degree of freedom, we are making a tremendous simplification. In
order to be careful not to exceed the actual capabilities of the device, this maximum
acceleration must be chosen conservatively. Therefore, we are not making full use of
the speed capabilities of the manipulator in paths planned by the methods introduced
in this chapter.

We might ask the following question: Given a desired spatial path of the end-
effector, find the timing information (which turns a description of a spatial path into
a trajectory) such that the manipulator reaches the goal point in minimum time.
Such problems have been solved by numerical means [7, 8]. The solution takes into
account both the rigid-body dynamics and actuator speed–torque constraint curves.

7.9 COLLISION-FREE PATH PLANNING

It would be extremely convenient if we could simply tell the robot system what the
desired goal point of the manipulator motion is, and let the system determine where
and how many via points are required so the goal is reached without the manipula-
tor’s hitting any obstacles. In order to do this, the system must have models of the
manipulator, the work area, and all the potential obstacles in the area. A second
manipulator could even be working in the same area; in that case, each arm would
have to be considered a moving obstacle for the other.

Systems that plan collision-free paths are not available commercially. Research
in this area has led to two competing principal techniques, and to several varia-
tions and combinations thereof. One approach solves the problem by forming a
connected-graph representation of the free space, then searching the graph for a
collision-free path [9–11, 17, 18]. Unfortunately, these techniques have exponential
complexity in the number of joints in the device. The second approach is based on
creating artificial potential fields around obstacles, which cause the manipulator(s)
to avoid the obstacles while they are drawn toward an artificial attractive pole
at the goal point [12]. Unfortunately, these methods generally have a local view
of the environment, and are subject to becoming “stuck” at local minima of the
artificial field.
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EXERCISES

7.1 [8] A five-link robot at rest moves from its initial position through three via points
and stops at its goal position using linear trajectories with parabolic blends. How
many segments and blend times are computed to describe this motion?

7.2 [13] A prismatic joint, initially at rest, is programmed to move from an initial posi-
tion d = 0.02 m to a resting goal position d = 0.15 m in 0.8 seconds. Calculate the
coefficients of the cubic spline that accomplishes this motion. Sketch the graphs
of joint position, velocity, and acceleration as a function of time.

7.3 [14] A rotary joint, initially at rest, is programmed to move from an initial posi-
tion θ = −20.0◦ to a resting goal position θ = 80.0◦ in 2.0 seconds. The motion
is desired to be smooth with minimum magnitude of acceleration. Calculate the
parameters for a linear trajectory with parabolic blends that accomplishes this
motion. Sketch the graphs of joint position, velocity, and acceleration as a function
of time.

7.4 [30] Write a path-planning software routine that implements (7.24) through (7.28)
in a general way for paths described by an arbitrary number of path points. For
example, this routine could be used to solve Example 7.4.
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7.5 [18] A rotary joint moves in two-segment cubic spline with continuous acceleration
given in Example 7.2. Calculate the velocity θ̇v and acceleration θ̈v at the via point
where θ0 = −5.0◦, θv = −15.0◦, and θg = 10.0◦. Each segment lasts 1.5 seconds.

7.6 [18] A rotary joint moves in a two-segment cubic spline with continuous acceler-
ation at its via point. Sketch the graphs of position, velocity, and acceleration for
which θ0 = 30.0◦, θv = 90.0◦, and θg = 0.0◦, where the first and second segments
last for 2.0 and 3.0 seconds, respectively.

7.7 [20] A rotary joint of a robot moves through the following path points θ : 45.0◦,
90.0◦, 30.0◦, and 60.0◦ in a three-segment linear spline with parabolic blends
(Example 7.4), and the duration of each segment is 4.0, 6.0, and 3.0 seconds.
Calculate all the segment velocities and blend times, using a default blend
acceleration with a magnitude of 15 degrees/second2. Sketch plots of position,
velocity, and acceleration of θ .

7.8 [18] Sketch graphs of position, velocity, and acceleration for the two-segment
continuous-acceleration spline given in Example 7.2. Sketch them for a joint for
which θ0 = 30.0◦, θv = −20.0◦, and θg = 5.0◦, and each segment lasts 3.0 seconds.

7.9 [18] A rotary joint moves in two-segment cubic spline with the desired velocity
of −20.0 degrees/second at its via point. Sketch the graphs of position, velocity,
and acceleration for an initial position θ0 = 75.0◦, via point θv = 60.0◦, and a goal
point of θg = 50.0◦. The first and second segments last for 1.0 and 0.5 seconds,
respectively. What are the accelerations right before and after the via point?

7.10 [20] Calculate θ̇12, θ̇23, t1, t2, and t3 for a two-segment linear spline with parabolic
blends. (Use (7.24) through (7.28).) For this joint, θ1 = 25.0◦, θ2 = 35.0◦,
and θ3 = −10.0◦. Assume that td12 = td23 = 4.0 seconds and that the default
acceleration to use during blends is 40 degrees/second2. Sketch plots of position,
velocity, and acceleration of θ .

7.11 [6] Give the Cartesian position SPG ORG and angle-axis orientation
S
GR equivalent to 6 × 1 position and orientation representation sχG =
[2.0 −4.5 8.0 0.0 −45.0 0.0]T.

7.12 [6] Give the S
GT that is equivalent to the Cartesian position SPG ORG =

[3.0 −2.0 4.0]T and angle-axis orientation S
GR = ROT(Ẑ, 30.0◦).

7.13 [30] Write a program that uses the dynamic equations from Section 6.7 (the
two-link planar manipulator) to compute the time history of torques needed
to move the arm along the trajectory of Exercise 7.8. What are the maximum
torques required, and where do they occur along the trajectory?

7.14 [32] Write a program that uses the dynamic equations from Section 6.7 (the
two-link planar manipulator) to compute the time history of torques needed to
move the arm along the trajectory of Exercise 7.8. Make separate plots of the
joint torques required due to inertia, velocity terms, and gravity.

7.15 [22] Complete Example 7.2 when tf 1 �= tf 2.
7.16 [25] A rotary joint moves in a linear trajectory with parabolic blends from θ0 to θf

with total duration of tf . The joint has velocity and acceleration limits of ‖θ̇ (t)‖
< θ̇max and ‖θ̈ (t)‖ < θ̈max , respectively, with given positive constants θ̇max and
θ̈max . Derive an expression for the total duration tf that satisfies the requirements
of the motion and the velocity and acceleration limits.

7.17 [10] A rotary joint (position given in degrees) moves in a cubic trajectory given by

θ(t) = 5 − 20t2 + 3t3

over a time interval from t = 0 to t = 1. Determine the functions of velocity and
acceleration. What are the final velocity and acceleration?
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7.18 [12] A prismatic joint (position given in mm) moves in a cubic trajectory given by

d(t) = 2 + 15t + 5t3

over a time interval from t = 0 to t = 0.5. What are the position, velocity, and
acceleration at the halfway point in time?

7.19 [13] A rotary joint (position given in degrees) moves in a cubic trajectory given by

θ(t) = 10t − 5t2 + 2t3

over a time interval from t = 0 to t = 5. What are the starting and final positions,
velocities, and accelerations?

7.20 [15] A prismatic joint (position given in mm) moves in a cubic trajectory given by

d(t) = −3 + 8t − 5t2 + 2t3

over a time interval from t = 0 to t = 3. What are the starting and final positions,
velocities, and accelerations?

7.21 [12] For a single cubic spline, if the displacement of the motion and the total dura-
tion are doubled, how does this change in trajectory affect the motion’s maximum
velocity and maximum acceleration values?

7.22 [17] A rotary joint moves in a linear trajectory with parabolic blends from θ0 to
θf with total duration of tf and blend time tb. Derive the expression for the accel-
eration of the parabolic blend θ̈ and linear portion velocity θ̇l as functions of the
initial position, final position, total duration, and blend time.

7.23 [18] The tool point of a two-link planar prismatic manipulator is to move from joint
position [x y]T = [0.0 0.0]T to [2.0 3.0]T through a via point [1.5 0.7]T with a two-
segment cubic spline with continuous acceleration given in Example 7.2 where
each segment lasts 1.0 second. Calculate the cubic splines required for this motion,
and plot the x-y coordinates of the trajectory.

7.24 [15] A two-link planar manipulator described in Fig. 6.6 initially at rest is to move
from joint angles [θ1 θ2]T = [−30.0◦ 15.0◦]T to [45.0◦ 60.0◦]T in 5 seconds in linear
trajectory with parabolic blends. Find the two joint trajectories that accomplish
this motion, and plot the x-y coordinates of the tool point given link lengths of
l1 = 2 and l1 = 1.5.

7.25 [17] A rotary joint, initially at rest at θ = 10.0◦, moves in two-segment cubic spline
with continuous acceleration at its via point. Compute the coefficients of the two
cubics, given that the joint moves smoothly through a via point θ = 70.0◦ and
reaches a final position of θg = 40.0◦. The first and second segments last 3.0 and
1.5 seconds, respectively.

7.26 [17] A rotary joint, initially at rest at θ = 10.0◦, moves in two-segment cubic spline.
The velocity at the via point is to be determined by tangents as shown in Fig. 7.4.
Compute the coefficients of the two cubics given that the joint moves smoothly
through a via point θ = 70.0◦ and reaches a final position of θg = 40.0◦. The first
and second segments last 3.0 and 1.5 seconds, respectively.

7.27 [19] A linear trajectory with parabolic blends moves with a total trajectory dura-
tion tf . Derive the expressions of linear portion velocity in terms of starting posi-
tion, final position, and total trajectory durations for the following cases: (a) zero
blend time, (b) linear portion lasts half the trajectory duration, and (c) blend time
lasts half the total duration.

7.28 [19] Sketch the graphs of positions and velocities for the three cases of trajectories
in Exercise 7.27.
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7.29 [14] A linear trajectory with parabolic blends moves from 10.0◦ to 37.0◦ with a
default acceleration of 1 degree/second2. It is required that the linear portion lasts
for half the total duration. Find the blend time, the linear portion velocity, and the
total duration.

PROGRAMMING EXERCISE (PART 7)

1. Write a joint-space, cubic-splined path-planning system. One routine that your
system should include is

Procedure CUBCOEF (VAR thO, thf, thdotO, thdotf: real; VAR

cc:

vec4);

where

th0 = initial position of θ at beginning of segment,

thf = final position of θ at segment end,

thdot0 = initial velocity of segment,

thdotf = final velocity of segment.

These four quantities are inputs, and “cc”, an array of the four cubic coefficients, is
the output.
Your program should accept up to (at least) five via-point specifications—in the
form of tool frame, {T }, relative to station frame, {S}—in the usual user form:
(x, y, φ). To keep life simple, all segments will have the same duration. Your system
should solve for the coefficients of the cubics, using some reasonable heuristic for
assigning joint velocities at the via points. Hint: See option 2 in Section 7.3.

2. Write a path-generator system that calculates a trajectory in joint space based on
sets of cubic coefficients for each segment. It must be able to generate the multiseg-
ment path you planned in Problem 1. A duration for the segments will be specified
by the user. It should produce position, velocity, and acceleration information at
the path-update rate, which will also be specified by the user.

3. The manipulator is the same three-link used previously. The definitions of the {T }
and {S} frames are the same as before:

W
TT = [x y θ ] = [0.1 0.2 30.0],
B
ST = [x y θ ] = [0.0 0.0 0.0].

Using a duration of 3.0 seconds per segment, plan and execute the path that starts
with the manipulator at position

[x1 y1 φ1] = [0.758 0.173 0.0],
moves through the via points

[x2 y2 φ2] = [0.6 −0.3 45.0],
and

[x3 y3 φ3] = [−0.4 0.3 120.0],
and ends at the goal point (in this case, same as initial point)

[x4 y4 φ4] = [0.758 0.173 0.0].



“runall”
2021/5/17
page 252

�

�

�

�

�

�

�

�

252 Chapter 7 Trajectory Generation

Use a path-update rate of 40 Hz, but print the position only every 0.2 seconds. Print
the positions out in terms of Cartesian user form. You don’t have to print out veloc-
ities or accelerations, though you might be interested in doing so.

MATLAB EXERCISE 7

The goal of this exercise is to implement polynomial joint-space trajectory-generation
equations for a single joint. (Multiple joints would require n applications of the result.)
Write a MATLAB program to implement the joint-space trajectory generation for the
three cases that follow. Report your results for the specific assignments given; for each
case, give the polynomial functions for the joint angle, angular velocity, angular accelera-
tion, and angular jerk (the time derivative of acceleration). For each case, plot the results.
(Arrange the plots vertically with angle, velocity, acceleration, and then jerk, all with the
same time scale—check out the subplot MATLAB function to accomplish this.) Don’t
just plot out results—provide some discussion; do your results make sense? Here are the
three cases:

a) Third-order polynomial. Force the angular velocity to be zero at the start and at the
finish. Given θs = 120

◦
(start), θf = 60

◦
(finish), and tf = 1 sec.

b) Fifth-order polynomial. Force the angular velocity and acceleration to be zero at
the start and at the finish. Given θs = 120

◦
, θf = 60

◦
, and tf = 1 sec. Compare your

results (functions and plots) with this same example, but using a single third-order
polynomial, as in problem (a).

c) Two third-order polynomials with via point. Force the angular velocity to be zero
at the start and at the finish. Don’t force the angular velocity to be zero at the via
point—you must match velocity and acceleration at this point for the two polynomi-
als meeting at that point in time. Demonstrate that this condition is satisfied. Given
θs = 60

◦
(start), θv = 120

◦
(via), θf = 30

◦
(finish), and t1 = t2 = 1 sec (relative time

steps—i.e., tf = 2 sec).
d) Check the results of (a) and (b) by means of the Corke Robotics Toolbox for

MATLAB®. Try the function jtraj().
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C H A P T E R 8

Manipulator-Mechanism Design

8.1 INTRODUCTION
8.2 BASING THE DESIGN ON TASK REQUIREMENTS
8.3 KINEMATIC CONFIGURATION
8.4 QUANTITATIVE MEASURES OF WORKSPACE ATTRIBUTES
8.5 REDUNDANT AND CLOSED-CHAIN STRUCTURES
8.6 ACTUATION SCHEMES
8.7 STIFFNESS AND DEFLECTIONS
8.8 POSITION SENSING
8.9 MORE ON OPTICAL ENCODERS
8.10 FORCE SENSING

8.1 INTRODUCTION

In previous chapters, we have seen that the particular structure of a manipulator
influences kinematic and dynamic analysis. For example, some kinematic configu-
rations will be easy to solve; others will have no closed-form kinematic solution.
Likewise, the complexity of the dynamic equations can vary greatly with the kine-
matic configuration and the mass distribution of the links. In coming chapters, we
will see that manipulator control depends not only on the rigid-body dynamics, but
also upon the friction and flexibility of the drive systems.

The tasks that a manipulator can perform will also vary greatly with the par-
ticular design. Although we have generally dealt with the robot manipulator as an
abstract entity, its performance is ultimately limited by such pragmatic factors as
load capacity, speed, size of workspace, and repeatability. For certain applications,
the overall manipulator size, weight, power consumption, and cost will be signifi-
cant factors.

This chapter discusses some of the issues involved in the design of the manip-
ulator. In general, methods of design, and even the evaluation of a finished design,
are partially subjective topics. It is difficult to narrow the spectrum of design choices
with many hard and fast rules.

The elements of a robot system fall roughly into four categories:

1. The manipulator, including its internal or proprioceptive sensors;
2. the end-effector, or end-of-arm tooling;
3. external sensors and effectors, such as vision systems and part feeders, and;
4. the controller.

253
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254 Chapter 8 Manipulator-Mechanism Design

The breadth of engineering disciplines encompassed forces us to restrict our
attention only to the design of the manipulator itself.

In developing a manipulator design, we will start by examining the factors likely
to have the greatest overall effect on the design, then consider more detailed ques-
tions. Ultimately, however, designing a manipulator is an iterative process. More
often than not, problems that arise in the solving of a design detail will force the
rethinking of previous higher level design decisions.

8.2 BASING THE DESIGN ON TASK REQUIREMENTS

Although robots are nominally “universally programmable” machines capable of
performing a wide variety of tasks, economies and practicalities dictate that differ-
ent manipulators be designed for particular types of tasks. For example, large robots
capable of handling payloads of hundreds of pounds do not generally have the capa-
bility to insert electronic components into circuit boards. As we shall see, not only
the size, but the number of joints, the arrangement of the joints, and the types of actu-
ation, sensing, and control will all vary greatly with the sort of task to be performed.

Number of Degrees of Freedom

The number of degrees of freedom in a manipulator should match the number
required by the task. Not all tasks require a full six degrees of freedom.

The most common such circumstance occurs when the end-effector has an axis
of symmetry. Figure 8.1 shows a manipulator positioning a grinding tool in two dif-
ferent ways. In this case, the orientation of the tool with respect to the axis of the
tool, ẐT , is immaterial, because the grinding wheel is spinning at several hundred
RPM. To say that we can position this 6-DOF robot in an infinity of ways for this
task (rotation about ẐT is a free variable), we say that the robot is redundant for
this task. Arc welding, spot welding, deburring, glueing, and polishing provide other
examples of tasks that often employ end-effectors with at least one axis of symmetry.

FIGURE 8.1:A 6-DOF manipulator with a symmetric tool contains a redundant degree
of freedom.
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In analyzing the symmetric-tool situation, it is sometimes helpful to imagine
a fictitious joint whose axis lies along the axis of symmetry. In positioning any end-
effector to a specific pose, we need a total of six degrees of freedom. Because one
of these six is our fictitious joint, the actual manipulator need not have more than
five degrees of freedom. If a 5-DOF robot were used in the application of Fig. 8.1,
then we would be back to the usual case in which only a finite number of different
solutions are available for positioning the tool. Quite a large percentage of existing
industrial robots are 5-DOF, in recognition of the relative prevalence of symmetric-
tool applications.

Some tasks are performed in domains that, fundamentally, have fewer than
six degrees of freedom. Placement of components on circuit boards provides a com-
mon example of this. Circuit boards generally are planar and contain parts of vari-
ous heights. Positioning parts on a planar surface requires three degrees of freedom
(x, y, and θ); in order to lift and insert the parts, a fourth motion normal to the plane
is added (z).

Robots with fewer than six degrees of freedom can also perform tasks in which
some sort of active positioning device presents the parts. In welding pipes, for exam-
ple, a tilt/roll platform (shown in Fig. 8.2), often presents the parts to be welded.
In counting the number of degrees of freedom between the pipes and the end-
effector, the tilt/roll platform accounts for two. This, together with the fact that arc
welding is a symmetric-tool task, means that, in theory, a 3-DOF manipulator could
be used. In practice, realities such as the need to avoid collisions with the workpiece
generally dictate the use of a robot with more degrees of freedom.

Parts with an axis of symmetry also reduce the required degrees of freedom
for the manipulator. For example, cylindrical parts can, in many cases, be picked up
and inserted independent of the orientation of the gripper with respect to the axis of
the cylinder. Note, however, that after the part is grasped, the orientation of the part
about its symmetric axis must fail to matter for all subsequent operations, because
its orientation is not guaranteed.

FIGURE 8.2: A tilt/roll platform provides two degrees of freedom to the overall manip-
ulator system.
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Workspace

In performing tasks, a manipulator has to reach a number of workpieces or fixtures.
In some cases, these can be positioned as needed to suit the workspace of the manip-
ulator. In other cases, a robot can be installed in a fixed environment with rigid
workspace requirements. Workspace is also sometimes called work volume or work
envelope.

The overall scale of the task sets the required workspace of the manipulator. In
some cases, the details of the shape of the workspace, and the location of workspace
singularities,will be important considerations.

The intrusion of the manipulator itself in the workspace can sometimes be
a factor. Depending on the kinematic design, operating a manipulator in a given
application could require more or less space around the fixtures in order to avoid
collisions. Restricted environments can affect the choice of kinematic configuration.

Load Capacity

The load capacity of a manipulator depends upon the sizing of its structural mem-
bers, power-transmission system, and actuators. The load placed on actuators and
drive system is a function of the configuration of the robot, the percentage of time
supporting a load, and dynamic loading due to inertial- and velocity-related forces.

Speed

An obvious goal in design has been for faster manipulators. High speed offers
advantages in many applications when a proposed robotic solution must compete on
economic terms with hard automation or human workers. For some applications,
however, the process itself limits the speed rather than the manipulator. This is the
case with many welding and spray-painting applications.

An important distinction is that between the maximum end-effector speed,
and the overall cycle time for a particular task. For pick-and-place applications, the
manipulator must accelerate and decelerate to and from the pick and place locations
within some positional accuracy bounds. Often, the acceleration and deceleration
phases take up most of the cycle time. Hence, acceleration capability, not just peak
speed, is very important.

Repeatability and Accuracy

High repeatability and accuracy, although desirable in any manipulator design, are
expensive to achieve. For example, it would be absurd to design a paint-spraying
robot to be accurate to within 0.001 inches, when the spray spot diameter is 8 inches
±2 inches. To a large extent, the accuracy of a particular model of industrial robot
depends upon the details of its manufacture rather than on its design. High accuracy
is achieved by having good knowledge of the link (and other) parameters. Making it
possible requires accurate measurements after manufacture, or careful attention to
tolerances during manufacturing.

8.3 KINEMATIC CONFIGURATION

Once the required number of degrees of freedom has been decided upon, a par-
ticular configuration of joints must be chosen to realize those freedoms. For serial
kinematic linkages, the number of joints equals the required number of degrees of
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freedom. Most manipulators are designed so that the last n − 3 joints orient the end-
effector and have axes that intersect at the wrist point, and the first three joints
position this wrist point. Manipulators with this design could be said to be com-
posed of a positioning structure followed by an orienting structure or wrist. As we
saw in Chapter 4, these manipulators always have closed-form kinematic solutions.
Although other configurations exist that possess closed-form kinematic solutions,
almost every industrial manipulator belongs to this wrist-partitioned class of mech-
anisms. Furthermore, the positioning structure is almost without exception designed
to be kinematically simple, having link twists equal to 0◦ or ±90◦, and having many
of the link lengths and offsets equal to zero.

It has become customary to classify manipulators of the wrist-partitioned, kine-
matically simple class according to the design of their first three joints (the position-
ing structure). The following paragraphs briefly describe the most common of these
classifications.

Cartesian

A Cartesian manipulator has perhaps the most straightforward configuration. As
shown in Fig. 8.3, joints 1 through 3 are prismatic, mutually orthogonal, and corre-
spond to the X̂, Ŷ , and Ẑ Cartesian directions. The inverse kinematic solution for this
configuration is trivial.

This configuration produces robots with very stiff structures. As a consequence,
very large robots can be built. These large robots, often called gantry robots, resem-
ble overhead gantry cranes. Gantry robots sometimes manipulate entire automobiles
or inspect entire aircraft.

The other advantages of Cartesian manipulators stem from the fact that the
first three joints are decoupled. This makes them simpler to design, and prevents
kinematic singularities due to the first three joints.

Their primary disadvantage is that all of the feeders and fixtures associated
with an application must reside “inside” the robot. Consequently, application work-
cells for Cartesian robots become very machine dependent. The size of the robot’s

Side view Top view

d2 d1

d3

FIGURE 8.3: A Cartesian manipulator.
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support structure limits the size and placement of fixtures and sensors. These limita-
tions make retrofitting Cartesian robots into existing workcells extremely difficult.

Articulated

Figure 8.4 shows an articulated manipulator, sometimes also called a jointed, elbow,
or anthropomorphic manipulator. A manipulator of this kind typically consists of
two “shoulder” joints (one for rotation about a vertical axis, and one for elevation
out of the horizontal plane), an “elbow” joint (whose axis is usually parallel to the
shoulder elevation joint), and two or three wrist joints at the end of the manipulator.
Both the PUMA 560 and the Motoman L-3, which we studied in earlier chapters, fall
into this class.

Articulated robots minimize the intrusion of the manipulator structure into
the workspace, making them capable of reaching into confined spaces. They require
much less overall structure than Cartesian robots, making them less expensive for
applications needing smaller workspaces.

SCARA

The SCARA1 configuration, shown in Fig. 8.5, has three parallel revolute joints
(allowing it to move and orient in a plane), with a fourth prismatic joint for moving
the end-effector normal to the plane. The chief advantage is that the first three joints
don’t have to support any of the weight of the manipulator or the load. In addition,
link 0 can easily house the actuators for the first two joints. The actuators can be
made very large, so the robot can move very fast. For example, the Adept One
SCARA manipulator can move at up to 30 feet per second, about 10 times faster
than most articulated industrial robots [1]. This configuration is best suited to
planar tasks.

Top viewSide view

θ1
θ3

θ2

FIGURE 8.4: An articulated manipulator.

1SCARA stands for “selectively compliant assembly robot arm.”



“runall”
2021/5/6
page 259

�

�

�

�

�

�

�

�

Section 8.3 Kinematic Configuration 259

Side view Top view

d3

θ1

θ2

FIGURE 8.5: A SCARA manipulator.

Spherical

The spherical configuration in Fig. 8.6 has many similarities to the articulated manip-
ulator, but with the elbow joint replaced by a prismatic joint. This design is better
suited to some applications than is the elbow design. The link that moves prismati-
cally might telescope—or even “stick out the back” when retracted.

Cylindrical

Cylindrical manipulators (see Fig. 8.7) consist of a prismatic joint for translating the
arm vertically, a revolute joint with a vertical axis, another prismatic joint orthogonal
to the revolute joint axis, and, finally, a wrist of some sort.

θ2 d3

Side view Top view

θ1

FIGURE 8.6: A spherical manipulator.
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d3

d2

Side view Top view

θ1

FIGURE 8.7: A cylindrical manipulator.

Wrists

The most common wrist configurations consist of either two or three revolute joints
with orthogonal, intersecting axes. The first of the wrist joints usually forms joint 4
of the manipulator.

A configuration of three orthogonal axes will guarantee that any orientation
can be achieved (assuming there are no joint-angle limits) [2]. As was stated in
Chapter 4, any manipulator with three consecutive intersecting axes will possess
a closed-form kinematic solution. Therefore, a three-orthogonal-axis wrist can be
located at the end of the manipulator in any desired orientation with no penalty.
Figure 8.8 is a schematic of one possible design of such a wrist, which uses several
sets of bevel gears to drive the mechanism from remotely located actuators.

A6
A5

A4

θ4

θ5

θ6

FIGURE 8.8: An orthogonal-axis wrist driven by remotely located actuators via three
concentric shafts.
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In practice, it is difficult to build a three-orthogonal-axis wrist not subject to
rather severe joint-angle limitations. An interesting design used in several robots
manufactured by Cincinatti Milacron (see Fig. 1.4) employs a wrist that has three
intersecting but nonorthogonal axes. In this design (called the “three roll wrist”), all
three joints of the wrist can rotate continuously without limits. The nonorthogonality
of the axes creates, however, a set of orientations that are impossible to reach with
this wrist. This set of unattainable orientations is described by a cone within which
the third axis of the wrist cannot lie (see Exercise 8.11). However, the wrist can be
mounted to link 3 of the manipulator in such a way that the link structure occupies
this cone, and so would be unavailable anyway. Figure 8.9 shows two drawings of
such a wrist [24].

Some industrial robots have wrists that do not have intersecting axes. This
implies that a closed-form kinematic solution might not exist. If, however, the wrist
is mounted on an articulated manipulator in such a way that the joint-4 axis is par-
allel to the joint-2 and -3 axes (as in Fig. 8.10), there will be a closed-form kinematic
solution. Likewise, a nonintersecting-axis wrist mounted on a Cartesian robot yields
a closed-form-solvable manipulator.

Typically, 5-DOF welding robots use two-axis wrists oriented as shown in
Fig. 8.11. Note that, if the robot has a symmetric tool, this “fictitious joint” must
follow the rules of wrist design. That is, in order to reach all orientations, the tool
must be mounted with its axis of symmetry orthogonal to the joint-5 axis. In the
worst case, when the axis of symmetry is parallel to the joint-5 axis, the fictitious
sixth axis is in a permanently singular configuration.

θ4

θ5

θ6

θ6

θ5

θ4

(a)

(b)

FIGURE 8.9: Two views of a nonorthogonal-axis wrist [24]. Adapted from Interna-
tional Encyclopedia of Robotics, by R. Dorf and S. Nof (editors). From Wrists by
M. Rosheim, John C. Wiley and Sons, Inc., New York, NY ©1988.
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θ1

θ2

θ3

θ4

θ6

θ5

FIGURE 8.10: A manipulator with a wrist whose axes do not intersect. However, this
robot does possess a closed-form kinematic solution.

θ4

θ5

TZ

FIGURE 8.11: Typical wrist design of a 5-DOF welding robot.
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8.4 QUANTITATIVE MEASURES OF WORKSPACE ATTRIBUTES

Manipulator designers have proposed several interesting quantitative measures of
various workspace attributes.

Efficiency of Design in Terms of Generating Workspace

Some designers have noticed that it seemed to take more material to build a Carte-
sian manipulator than to build an articulated manipulator of similar workspace vol-
ume. To get a quantitative handle on this, we first define the length sum of a manip-
ulator as

L =
N∑

i=1

(ai−1 + di), (8.1)

where ai−1 and di are the link length and joint offset as defined in Chapter 3. Thus, the
length sum of a manipulator gives a rough measure of the “length” of the complete
linkage. Note that, for prismatic joints, di must be interpreted here as a constant
equal to the length of travel between the joint-travel limits.

In [3], the structural length index, QL, is defined as the ratio of the manipula-
tor’s length sum to the cube root of the workspace volume—that is,

QL = L/ 3
√

w, (8.2)

where L is given in (8.1) and W is the volume of the manipulator’s workspace. Hence,
QL attempts to index the relative amount of structure (linkage length) required by
different configurations to generate a given work volume. Thus, a good design would
be one in which a manipulator with a small length sum nonetheless possessed a large
workspace volume. Good designs have a low QL.

Considering just the positioning structure of a Cartesian manipulator (and
therefore the workspace of the wrist point), the value of QL is minimized when
all three joints have the same length of travel. This minimal value is QL = 3.0.
On the other hand, an ideal articulated manipulator, such as the one in Fig. 8.4,
has QL = 1

3√4π/3
∼= 0.62. This helps quantify our earlier statement that articulated

manipulators are superior to other configurations, in that they have minimal intru-
sion into their own workspace. Of course, in any real manipulator structure, the
figure just given would be made somewhat larger by the effect of joint limits in
reducing the workspace volume.

EXAMPLE 8.1

A SCARA manipulator, like that of Fig. 8.5, has links 1 and 2 of equal length l/2,
and the range of motion of the prismatic joint 3 is given by d3. Assume for simplicity
that the joint limits are absent, and find QL. What value of d3 minimizes QL, and
what is this minimal value?

The length sum of this manipulator is L = l/2 + l/2 + d3 = l + d3, and the
workspace volume is that of a right cylinder of radius l and height d3; therefore,

QL = l + d3
3
√

πl2d3
. (8.3)

Minimizing QL as a function of the ratio d3/l gives d3 = l/2 as optimal [3]. The cor-
responding minimal value of QL is 1.29.
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Designing Well-Conditioned Workspaces

At singular points, a manipulator effectively loses one or more degrees of freedom, so
certain tasks may not be able to be performed at those points. In fact, in the neighbor-
hood of singular points (including workspace-boundary singularities), actions of the
manipulator could fail to be well-conditioned. In some sense, the farther the manip-
ulator is away from singularities, the better able it is to move uniformly and apply
forces uniformly in all directions. Several measures have been suggested for quanti-
fying this effect. The use of such measures at design time might yield a manipulator
design with a maximally large well-conditioned subspace of the workspace.

Singular configurations are given by

det(J (�)) = 0, (8.4)

so it is natural to use the determinant of the Jacobian in a measure of manipulator
dexterity. In [4], the manipulability measure, w, is defined as

w =
√

det(J (�)J T (�)), (8.5)

which, for a nonredundant manipulator, reduces to

w = |det(J (�))|. (8.6)

A good manipulator design has large areas of its workspace characterized by high
values of w.

Whereas velocity analysis motivated (8.6), other researchers have proposed
manipulability measures based on acceleration analysis or force-application capa-
bility. Asada [5] suggested an examination of the eigenvalues of the Cartesian mass
matrix

Mx(�) = J−T (�)M(�)J−1(�) (8.7)

as a measure of how well the manipulator can accelerate in various Cartesian direc-
tions. He suggests a graphic representation of this measure as an inertia ellipsoid,
given by

XT Mx(�)X = 1, (8.8)

the equation of an n-dimensional ellipse, where n is the dimension of X. The axes of
the ellipsoid given in (8.8) lie in the directions of the eigenvectors of Mx(�), and the
reciprocals of the square roots of the corresponding eigenvalues provide the lengths
of the axes of the ellipsoid. Well-conditioned points in the manipulator workspace
are characterized by inertia ellipsoids that are spherical (or nearly so).

Figure 8.12 graphically shows the properties of a planar two-link manipulator.
In the center of the workspace, the manipulator is well-conditioned, as is indicated
by nearly circular ellipsoids. At workspace boundaries, the ellipses flatten, indicating
the manipulator’s difficulty in accelerating in certain directions.

Other measures of workspace conditioning have been proposed in [6–8, 25].

8.5 REDUNDANT AND CLOSED-CHAIN STRUCTURES

In general, the scope of this book is limited to manipulators that are serial-chain
linkages of six or fewer joints. In this section, however, we will briefly discuss manip-
ulators outside of this class.
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FIGURE 8.12: Workspace of a 2-DOF planar arm, showing inertia ellipsoids, adapted
from [5] (©1984 IEEE). The dashed line indicates a locus of isotropic points in the
workspace.

Micromanipulators and Other Redundancies

General spatial positioning capability requires only six degrees of freedom, but there
are advantages to having even more controllable joints.

One use for these extra freedoms is already finding some practical applica-
tion [9,10] and is of growing interest in the research community: a micromanipulator.
A micromanipulator is generally formed by several fast, precise degrees of free-
dom located near the distal end of a “conventional” manipulator. The conventional
manipulator takes care of large motions, while the micromanipulator, whose joints
generally have a small range of motion, accomplishes fine motion and force control.

Additional joints can also help a mechanism avoid singular configurations, as
is suggested in [11, 12]. For example, any three-degree-of-freedom wrist will suffer
from singular configurations (when all three axes lie in a plane), but a four-degree-
of-freedom wrist can effectively avoid such configurations [13–15].

Figure 8.13 shows two configurations suggested for seven-degree-of-freedom
manipulators [11, 12].

A major potential use of redundant robots is in avoiding collisions while oper-
ating in cluttered work environments. As we have seen, a six-degree-of-freedom
manipulator can reach a given position and orientation in only a finite number of
ways. The addition of a seventh joint allows an infinity of ways, permitting the desire
to avoid obstacles to influence the choice.

Closed-Loop Structures

Although we have considered only serial-chain manipulators in our analysis,
some manipulators contain closed-loop structures. For example, the Motoman L-3
robot possesses closed-loop structures in the drive mechanism of joints 2 and 3.
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θ1
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FIGURE 8.13: Two suggested seven-degree-of-freedom manipulator designs [3].

Closed-loop structures offer a benefit: increased stiffness of the mechanism [16].
On the other hand, closed-loop structures generally reduce the allowable range of
motion of the joints, and thus decrease the workspace size.

Figure 8.14 depicts a Stewart mechanism, a closed-loop alternative to the serial
6-DOF manipulator. The position and orientation of the “end-effector” is controlled
by the lengths of the six linear actuators which connect it to the base. At the base end,
each actuator is connected by a two-degree-of-freedom universal joint. At the end-
effector, each actuator is attached with a three-degree-of-freedom ball-and-socket
joint. It exhibits characteristics common to most closed-loop mechanisms: it can be
made very stiff, but the links have a much more limited range of motion than do serial
linkages. The Stewart mechanism, in particular, demonstrates an interesting reversal
in the nature of the forward and inverse kinematic solutions: the inverse solution
is quite simple, whereas the forward solution is typically quite complex, sometimes
lacking a closed-form formulation (see Exercises 8.7 and 8.12).

In general, the number of degrees of freedom of a closed-loop mechanism is
not obvious. The total number of degrees of freedom can be computed by means of
Grübler’s formula [17],

F = 6(l − n − 1) +
n∑

i=1

fi, (8.9)

where F is the total number of degrees of freedom in the mechanism, l is the num-
ber of links (including the base), n is the total number of joints, and fi is the number
of degrees of freedom associated with the ith joint. A planar version of Grübler’s
formula (when all objects are considered to have three degrees of freedom if uncon-
strained) is obtained by replacing the 6 in (8.9) with a 3.
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d5

d6
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d1

Base

_End-effector 0

FIGURE 8.14: The Stewart mechanism is a six-degree-of-freedom fully parallel
manipulator.

EXAMPLE 8.2

Use Grübler’s formula to verify that the Stewart mechanism (see Fig. 8.14) indeed
has six degrees of freedom.

The number of joints is 18 (6 universal, 6 ball-and-socket, and 6 prismatic in
the actuators). The number of links is 14 (2 parts for each actuator, the end-effector,
and the base). The sum of all the joint freedoms is 36. Using Grübler’s formula, we
can verify that the total number of degrees of freedom is six:

F = 6(14 − 18 − 1) + 36 = 6. (8.10)

8.6 ACTUATION SCHEMES

Once the general kinematic structure of a manipulator has been chosen, the next
most important matter of concern is the actuation of the joints. Typically, the actua-
tor, reduction, and transmission are closely coupled, and must be designed together.

Actuator Location

The most straightforward choice of actuator location is at or near the joint it drives.
If the actuator can produce enough torque or force, its output can attach directly
to the joint. This arrangement, known as a direct-drive configuration [18], offers the
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advantages of simplicity in design and superior controllability—that is, with no trans-
mission or reduction elements between the actuator and the joint, the joint motions
can be controlled with the same fidelity as the actuator itself.

Unfortunately, many actuators are best suited to relatively high speeds and
low torques, and therefore require a speed-reduction system. Furthermore, actuators
tend to be rather heavy. If they can be located remotely from the joint and toward
the base of the manipulator, the overall inertia of the manipulator can be reduced
considerably. This, in turn, reduces the size needed for the actuators. To realize these
benefits, a transmission system is needed to transfer the motion from the actuator to
the joint.

In a joint-drive system with a remotely mounted actuator, the reduction sys-
tem could be placed either at the actuator or at the joint. Some arrangements com-
bine the functions of transmission and reduction. Aside from added complexity, the
major disadvantage of reduction and transmission systems is that they introduce
additional friction and flexibility into the mechanism. When the reduction is at the
joint, the transmission will be working at higher speeds and lower torques. Lower
torque means that flexibility will be less of a problem. However, if the weight of the
reducer is significant, some of the advantage of remotely mounted actuators is lost.

In Chapter 3, details were given for the actuation scheme of the Yasukawa
Motoman L-3, which is typical of a design in which actuators are mounted remotely
and resulting joint motions are coupled. Equations (3.15) show explicitly how actua-
tor motions cause joint motions. Note, for example, that motion of actuator 2 causes
motion of joints 2, 3, and 4.

The optimal distribution of reduction stages throughout the transmission will
depend ultimately on the flexibility of the transmission, the weight of the reduction
system, the friction associated with the reduction system, and the ease of incorporat-
ing these components into the overall manipulator design.

Reduction and Transmission Systems

Gears are the most common element used for reduction. They can provide for large
reductions in relatively compact configurations. Gear pairs come in various configu-
rations for parallel shafts (i.e. spur gears), orthogonal intersecting shafts (i.e. bevel
gears), skew shafts (i.e. worm gears or cross helical gears), and other configurations.
Different types of gears have different load ratings, wear characteristics, and fric-
tional properties.

The major disadvantages of using gearing are added backlash and friction.
Backlash, which arises from the imperfect meshing of gears, can be defined as the
maximum angular motion of the output gear when the input gear remains fixed.
If the gear teeth are meshed tightly to eliminate backlash, there can be excessive
amounts of friction. Very precise gears, and very precise mounting, minimize these
problems, but also increase cost.

The gear ratio, η, describes the speed-reducing and torque-increasing effects of
a gear pair. For speed-reduction systems, we will define η > 1; then the relationships
between input and output speeds and torques are given by

θ̇o = (1/η)θ̇i

τo = ητi,
(8.11)
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where θ̇o and θ̇i are output and input speeds, respectively, and τo and τi are output
and input torques, respectively.

The second broad class of reduction elements includes flexible bands, cables,
and belts. Because all of these elements must be flexible enough to bend around
pulleys, they also tend to be flexible in the longitudinal direction. The flexibility of
these elements is proportional to their length. Because these systems are flexible,
there must be some mechanism for preloading the loop to ensure that the belt or
cable stays engaged on the pulley. Large preloads can add undue strain to the flexible
element and introduce excessive friction.

Cables or flexible bands can be used either in a closed loop or as single-ended
elements that are always kept in tension by some sort of preload. In a joint that is
spring loaded in one direction, a single-ended cable could be used to pull against it.
Alternately, two active single-ended systems can oppose each other. This arrange-
ment eliminates the problem of excessive preloads, but adds more actuators.

Roller chains are similar to flexible bands, but can bend around relatively small
pulleys while retaining a high stiffness. As a result of wear and high loads on the pins
connecting the links, toothed-belt systems are more compact than roller chains for
certain applications.

Band, cable, belt, and chain drives have the ability to combine transmission
with reduction. As is shown in Fig. 8.15, when the input pulley has radius r1 and the
output pulley has radius r2, the “gear” ratio of the transmission system is

η = r2

r1
. (8.12)

Lead screws or ball-bearing screws provide another popular method of getting
a large reduction in a compact package (see Fig. 8.16). Lead screws are very stiff, can
support very large loads, and have the property that they transform rotary motion
into linear motion. Ball-bearing screws are similar to lead screws, but instead of hav-
ing the nut threads riding directly on the screw threads, a recirculating circuit of ball
bearings rolls between the sets of threads. Ball-bearings screws have very low friction
and are usually backdrivable.

r1

r2

Input Output

FIGURE 8.15: Band, cable, belt, and chain drives have the ability to combine transmis-
sion with reduction.
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Nut

(a) (b)

Race

FIGURE 8.16: Lead screws (a) and ball-bearing screws (b) combine a large reduction
and transformation from rotary to linear motion.

8.7 STIFFNESS AND DEFLECTIONS

An important goal for the design of most manipulators is overall stiffness of the
structure and the drive system. Stiff systems provide two main benefits. First, because
typical manipulators do not have sensors to measure the tool frame location directly,
it is calculated by using the forward kinematics based on sensed joint positions. For an
accurate calculation, the links cannot sag under gravity or other loads. In other words,
we wish our Denavit–Hartenberg description of the linkages to remain fixed under
various loading conditions. Second, flexibilities in the structure or drive train will lead
to resonances, which have an undesirable effect on manipulator performance. In this
section, we will consider issues of stiffness and the resulting deflections under loads.
We will postpone further discussion of resonances until Chapter 9.

Flexible Elements in Parallel and in Series

As can be easily shown (see Exercise 8.21), the combination of two flexible members
of stiffness k1 and k2 “connected in parallel” produces the net stiffness

kparallel = k1 + k2; (8.13)

“connected in series,” the combination produces the net stiffness

1
kseries

= 1
k1

+ 1
k2

. (8.14)

In considering transmission systems, we often have the case of one stage of
reduction or transmission in series with a following stage of reduction or transmis-
sion; hence, (8.14) becomes useful.

Shafts

A common method for transmitting rotary motion is through shafts. The torsional
stiffness of a round shaft can be calculated [19] as

k = Gπd4

32l
, (8.15)
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where d is the shaft diameter, l is the shaft length, and G is the shear modulus
of elasticity (about 7.5 × 1010 Nt/m2 for steel, and about a third as much for
aluminum).

Gears

Gears, although typically quite stiff, introduce compliance into the drive system. An
approximate formula to estimate the stiffness of the output gear (assuming the input
gear is fixed) is given in [20] as

k = Cgbr2, (8.16)

where b is the face width of the gears, r is the radius of the output gear, and Cg =
1.34 × 1010 Nt/m2 for steel.

Gearing also has the effect of changing the effective stiffness of the drive system
by a factor of η2. If the stiffness of the transmission system prior to the reduction
(i.e., on the input side) is ki , so that

τi = kiδθi, (8.17)

and the stiffness of the output side of the reduction is ko, so that

τo = koδθo, (8.18)

then we can compute the relationship between ki and ko (under the assumption of a
perfectly rigid gear pair) as

ko = τo

δθo

= ηkiδθi

(1/η)δθi

= η2ki . (8.19)

Hence, a gear reduction has the effect of increasing the stiffness by the square of the
gear ratio.

EXAMPLE 8.3

A shaft with torsional stiffness equal to 500.0 Nt-m/radian is connected to the input
side of a gear set with η = 10, whose output gear (when the input gear is fixed)
exhibits a stiffness of 5000.0 Nt m/radian. What is the output stiffness of the com-
bined drive system?

Using (8.14) and (8.19), we have

1
kseries

= 1
5000.0

+ 1
102(500.0)

, (8.20)

or

kseries = 50000
11

∼= 4545.4 Nt m/radian. (8.21)

When a relatively large speed reduction is the last element of a multi-element
transmission system, the stiffnesses of the preceding elements can generally be
ignored.
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l

FIGURE 8.17: Simple cantilever beam used to model the stiffness of a link to an end
load.

Belts

In such a belt drive as that of Fig. 8.15, stiffness is given by

k = AE

l
, (8.22)

where A is the cross-sectional area of the belt, E is the modulus of elasticity of the
belt, and l is the length of the free belt between pulleys plus one-third of the length
of the belt in contact with the pulleys [19].

Links

As a rough approximation of the stiffness of a link, we might model a single link as
a cantilever beam and calculate the stiffness at the end point, as in Fig. 8.17. For a
round hollow beam, this stiffness is given by [19]

k = 3πE(d4
o − d4

i )

64l3 , (8.23)

where di and do are the inner and outer diameters of the tubular beam, l is the
length, and E is the modulus of elasticity (about 2 × 1011 Nt/m2 for steel, and about
a third as much for aluminum). For a square-cross-section hollow beam, this stiffness
is given by

k = E(w4
o − w4

i )

4l3 , (8.24)

where wi and wo are the outer and inner widths of the beam (i.e., the wall thickness
is (wo − wi)/2).

EXAMPLE 8.4

A square-cross-section link of dimensions 5 × 5 × 50 cm with a wall thickness of
0.5 cm is driven by a set of rigid gears with η = 10, and the input of the gears is
driven by a shaft having a diameter of 0.5 cm and a length of 30 cm. What deflection
is caused by a force of 100 Nt at the end of the link?
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Using (8.24), we calculate the stiffness of the link as

klink = (2 × 1011)(0.054 − 0.044)

4(0.5)3
∼= 1.48 × 106. (8.25)

Hence, for a load of 100 Nt, there is a deflection in the link itself of

δx = 100
klink

∼= 6.8 × 10−6 m, (8.26)

or 0.0068 mm.
Additionally, 100 Nt at the end of a 50-cm link is placing a torque of 50 Nt-m

on the output gear. The gears are rigid, but the flexibility of the input shaft is

kshaft = (7.5 × 1010)(3.14)(5 × 10−3)4

(32)(0.3)
∼= 15.3 Nt m/radian, (8.27)

which, viewed from the output gear, is

k′
shaft = (15.3)(102) = 1530.0 Nt-m/radian. (8.28)

Loading with 50 Nt-m causes an angular deflection of

δθ = 50.0
1530.0

∼= 0.0326 radian, (8.29)

so the total linear deflection at the tip of the link is

δx ∼= 0.001 + (0.0326)(50) = 0.027 + 1.630 = 1.657 cm. (8.30)

In our solution, we have assumed that the shaft and link are made of steel. The
stiffness of both members is linear in E, the modulus of elasticity, so, for aluminum
elements, we can multiply our result by about 3.

In this section, we have examined some simple formulas for estimating the stiff-
ness of gears, shafts, belts, and links. They are meant to give some guidance in sizing
structural members and transmission elements. However, in practical applications,
many sources of flexibility are very difficult to model. Often, the drive train intro-
duces significantly more flexibility than the link of a manipulator. Furthermore, many
sources of flexibility in the drive system have not been considered here (bearing flex-
ibility, flexibility of the actuator mounting, etc.). Generally, any attempt to predict
stiffness analytically results in an overly high prediction, because many sources are
not considered.

Finite-element techniques can be used to predict the stiffness (and other prop-
erties) of more realistic structural elements more accurately. This is an entire field in
itself [21], and is beyond the scope of this book.

Actuators

Among various actuators, hydraulic cylinders or vane actuators were originally the
most popular for use in manipulators. In a relatively compact package, they can
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produce enough force to drive joints without a reduction system. The speed of opera-
tion depends upon the pump and accumulator system, usually located remotely from
the manipulator. The position control of hydraulic systems is well understood and
relatively straightforward. All of the early industrial robots and many modern large
industrial robots, use hydraulic actuators.

Unfortunately, hydraulics require a great deal of equipment, such as pumps,
accumulators, hoses, and servo valves. Hydraulic systems also tend to be inherently
messy, making them unsuitable for some applications. With the advent of more
advanced robot-control strategies, in which actuator forces must be applied accu-
rately, hydraulics proved disadvantageous, because of the friction contributed by
their seals.

Pneumatic cylinders possess all the favorable attributes of hydraulics, and they
are cleaner than hydraulics—air seeps out instead of hydraulic fluid. However, pneu-
matic actuators have proven difficult to accurately control, because of the compress-
ibility of air and the high friction of the seals.

Electric motors are the most popular actuator for manipulators. Although they
don’t have the power-to-weight ratio of hydraulics or pneumatics, their controllability
and ease of interface makes them attractive for small-to-medium-sized manipulators.

Direct current (DC) brush motors (see Fig. 8.18) are the most straightforward
to interface and control. The current is conducted to the windings of the rotor via
brushes, which make contact with the revolving commutator. Brush wear and friction
can be problems. New magnetic materials have made high peak torques possible.
The limiting factor on the torque output of these motors is the overheating of the
windings. For short duty cycles, high torques can be achieved, but only much lower
torques can be sustained over long periods of time.

Brushless motors solve brush wear and friction problems. Here, the windings
remain stationary and the magnetic field piece rotates. A sensor on the rotor detects
the shaft angle and is then used by external electronics to perform the commutation.

Brush

Shaft
Bearings

Commutator

Brush

Stator magnet

Stator magnet

Rotor windings

Shaft angle, θ

ia

S

N

FIGURE 8.18: DC brush motors are among the actuators occurring most frequently
in manipulator design. Adapted from Franklin, Powell, Emami-Naeini, Feedback
Control of Dynamic Systems, © 1988, Addison-Wesley, Reading, MA.
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Another advantage of brushless motors is that the winding is on the outside, attached
to the motor case, affording it much better cooling. Sustained torque ratings tend to
be somewhat higher than for similar-sized brush motors.

Alternating current (AC) motors and stepper motors have been used infre-
quently in industrial robotics. Difficulty of control of the former, and low torque
ability of the latter, have limited their use.

8.8 POSITION SENSING

Virtually all manipulators are servo-controlled mechanisms—that is, the force or
torque command to an actuator is based on the error between the sensed position
of the joint and the desired position. This requires that each joint have some sort of
position-sensing device.

The most common approach is to locate a position sensor directly on the shaft
of the actuator. If the drive train is stiff and has no backlash, the true joint angles can
be calculated from the actuator shaft positions. Such co-located sensor and actuator
pairs are easiest to control.

The most popular position-feedback device is the rotary optical encoder. As
the encoder shaft turns, a disk containing a pattern of fine lines interrupts a light
beam. A photodetector turns these light pulses into a binary waveform. Typically,
there are two such channels, with wave pulse trains 90 degrees out of phase. The
shaft angle is determined by counting the number of pulses, and the direction of
rotation is determined by the relative phase of the two square waves. Additionally,
encoders generally emit an index pulse at one location, which can be used to set a
home position in order to compute an absolute angular position. More on optical
encoders in Section 8.9.

Resolvers are devices that output two analog signals—one the sine of the shaft
angle, the other the cosine. The shaft angle is computed from the relative magni-
tude of the two signals. The resolution is a function of the quality of the resolver and
the amount of noise picked up in the electronics and cabling. Resolvers are often
more reliable than optical encoders, but their resolution is lower. Typically, resolvers
cannot be placed directly at the joint without additional gearing to improve the res-
olution.

Potentiometers provide the most straightforward form of position sensing.
Connected in a bridge configuration, they produce a voltage proportional to the
shaft position. Difficulties with resolution, linearity, and noise susceptibility limit
their use.

Tachometers are sometimes used to provide an analog signal proportional to
the shaft velocity. In the absence of such velocity sensors, the velocity feedback is
derived by taking differences of sensed position over time. This numerical differen-
tiation can introduce both noise and a time lag. Despite these potential problems,
most manipulators are without direct velocity sensing.

8.9 MORE ON OPTICAL ENCODERS

Optical encoders generally employ optics in such a way as to cause a light sensor
to output a voltage with sinusoidal amplitude as one slot in the disk passes over
the light source. A second sensor is offset and generates a similar sinusoid that is
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90-degrees out of phase with the first (or, one could think of it as being a cosine
waveform). This quadrature arrangement is used because the direction of the shaft
rotation alters which sine wave is “leading” the other—hence the direction of rota-
tion can be determined. Remember, a complete sinusoidal cycle from these sensors
occurs as the disk moves by just one slot or grating line. Hence, an encoder that has
500 lines around its disk will produce 500 cycles for one full shaft revolution.

The resolution of encoders is increased beyond the number of slots in the disk
by the process of interpolation. One can think of it this way: the two waveforms
coming from the optics are read with an A/D converter into a CPU. The CPU forms
the ratio of the two signals (sine over cosine), thus computing the tangent of an angle.
We then compute the arc tangent of this value to arrive at an angle. This angle varies
from 0 to 360 degrees as the disk rotates across a single grating line. For example, if
we then output one count for each degree, we would effectively be interpolating by
a factor of 360. So if the disk has 500 slots, we then have an encoder that will output
500 × 360 = 180, 000 counts per revolution.

The accuracy of an encoder is limited by two major sources of error. These
two sources of error are sometimes called error in the small and error in the large.
The waveforms coming from the optical system are never perfect sinewaves, so the
formulation of the tangent of an angle is an approximation. This causes “errors in the
small” due to the interpolation as we rotate over a single grating. Errors in the small
can be corrected to some extent by building a lookup table to perform the arc tangent
computation by modifying the tabular function to match whatever waveform shape
the optics are producing.

The other main source of error is primarily due to the mechanics of the rotating
disk on a shaft: it is not possible to make a disk with a perfect radial slot pattern, and
it is not possible to mount a disk such that the center of the grating pattern is exactly
on the center of the shaft of the motor. So, “errors in the large” are caused primarily
by the disk not being centered on the shaft. The magnitude of “errors in the large”
varies as we rotate around a full rotation of the encoder shaft. This is in contrast
to errors in the small which occur within a single grating line. Errors in the large
are also sometimes called once-around error, or eccentricity error, or run-out error.
Correcting once-around error generally requires the use of some form of external
measurement once the encoder is connected to the shaft. Both types of correction
are used in some commercial encoders [26].

It is often stated that once-around errors are sinusoidal in shape [27], but a
careful geometric analysis shows that the actual shape is a bit more complicated than
sinusoidal, but the shape approaches that of a sine wave if some approximations
are used.

In Fig. 8.19, we define symbols that we will use in describing our method.
In Fig. 8.19, the symbol O is at the optic of the encoder and R is at the rotation
center of the shaft whose angular position is to be measured—the optical radius d is
the fixed distance between these two points. The center of the disk is located at C
and has an alignment error of e with the center of rotation at R. The distance e is
also a fixed distance. When we say “center of the disk” we mean the center of the
optical pattern of gratings on that disk.

In Fig. 8.19, we draw the situation with an arbitrary angle between the lines RO
and RC, here shown to be about 90 degrees. This angle changes as the shaft rotates.
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d

O

RC

e

FIGURE 8.19: The optical sensor is at “O”, the center of the disk is at “C” but the
center of the shaft is at “R”.

C R

d

O

e

FIGURE 8.20: Like Figure 8.19, but with the grating lines shown.

Figure 8.20 shows the disk, with its grating pattern centered at C, but the rota-
tion center at R is offset by a distance e. This is an exaggerated figure—in actual
applications the value of e might be on the order of 5 to 100 microns. Figure 8.20
shows a grating line passing under the optic. As these grating lines pass under the
optic, the encoder counts them and interpolates between them to calculate its angu-
lar position.

In Fig. 8.21, we show the location of a certain grating line CA in two different
positions: before and after the shaft rotates by θ . The disk starts with grating line CA
positioned vertically and with the center of the disk in position C1, and the other end
of the grating line at A1, exactly under the optic at O. After the shaft rotates about
R by θ the center of the disk has moved to C2 and the other end of the grating line is
now at A2. In this position, we now see that the grating line currently under the optic
is the one oriented from C2 to O. In terms of the span of grating lines that must have
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R

O

A1

A2

C2

C1θ9

θ

FIGURE 8.21: The line segment CA, representing a grating line, shown in two different
positions when shaft angle changes by θ .

passed under the optic, it is clear that all grating lines over the angular span given by
θ ′ must have gone under the optic and been counted. Thus, although the shaft was
rotated by θ the encoder has measured an angular change of θ ′. Figure 8.21 elucidates
the basic geometry that describes the encoding errors induced by misalignment of the
disk center with the rotation center, sometimes called “once-around error”.

If we continue the rotation of the shaft and re-draw Fig. 8.21 for various other
positions, it becomes clear that the measured value “gains” counts in the first 90
degrees of shaft rotation, then starts to “lose” counts until at 180 degrees of rotation
the true and measured angles again match. Continuing, over the next 90 degrees the
encoder seems to “lose” counts, and finally over the last 90 degrees it again “gains”
counts until measured and actual rotation angle again match at the starting point.
A plot of this “once around error” appears roughly sinusoidal in nature.

In Fig. 8.22, we show a constructed line drawn through point C2 such that it is
parallel to line RO. With this construct we see that the angular error between actual
rotation of the shaft and measured rotation is equal to the angle shown as �.

In Fig. 8.23, we show the triangle from Fig. 8.22, noting that the acute angle at
the top of the figure is the same � identified in Fig. 8.22, and adding the distance
labels d and e defined earlier. We also introduce the symbol L which is the variable
length of the third side of the triangle.

Given the geometry of Fig. 8.23, we now seek an expression for � as a function
of d, e, and θ , that is:

� = f(d, e, θ) (8.31)

The expression of equation (8.31) will give us directly the “once around error”
as a function of the shaft rotation (θ) for any misalignment (e) and any optical
radius (d).
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R

O

A1

A2

C2

C1θ

φ

θ

FIGURE 8.22: Dotted line through C2 which is parallel to RO.

R

O

e

d
L

φ

θ

FIGURE 8.23: Triangle from Figure 8.22 that we will analyze.

Applying the “law of cosines” to the triangle of Fig. 8.23 we can derive:

cos(�) = d − e cos(θ)

L
(8.32)

and applying the “law of sines” we can derive:

sin(�) = e sin(θ)

L
(8.33)

Combining (8.32) and (8.33) we have:

tan(�) = e sin(θ)

d − e cos(θ)
(8.34)
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Hence, “once-around” error is given by

� = tan−1
(

e sin(θ)

d − e cos(θ)

)
(8.35)

Plotting (8.35) gives a shape which looks similar to a sinusoidal function, but it is
not quite sinusoidal. However, as e approaches zero, the function approaches the
sinusoidal shape.

Indeed, applying an approximate analysis based on e � d, yields the following
approximate expressions for once-around error:

� = tan−1
( e

d

)
sin(θ) (8.36)

Further simplifying using small angle approximations we derive an approximate
expression as:

� = e
d

sin(θ) (8.37)

Expression (8.37) is the one cited elsewhere as the statement of once-around error,
but it is actually an approximate expression, with that of (8.35) being more precise.

8.10 FORCE SENSING

A variety of devices have been designed to measure forces of contact between a
manipulator’s end-effector and the environment that it touches. Most such sensors
make use of sensing elements called strain gauges, of either the semiconductor or the
metal-foil variety. These strain gauges are bonded to a metal structure and produce
an output proportional to the strain in the metal. In this type of force-sensor design,
the issues the designer must address include the following:

1. How many sensors are needed to resolve the desired information?
2. How are the sensors mounted relative to each other on the structure?
3. What structure allows good sensitivity while maintaining stiffness?
4. How can protection against mechanical overload be built into the device?

There are three places where such sensors are usually placed on a manipulator:

1. At the joint actuators. These sensors measure the torque or force output of the
actuator/reduction itself. These are useful for some control schemes, but usu-
ally do not provide good sensing of contact between the end-effector and the
environment.

2. Between the end-effector and last joint of the manipulator. These sensors are usu-
ally referred to as wrist sensors. They are mechanical structures instrumented
with strain gauges, which can measure the forces and torques acting on the
end-effector. Typically, these sensors are capable of measuring from three to
six components of the force/torque vector acting on the end-effector.

3. At the “fingertips” of the end-effector. Usually, these force-sensing fingers have
built-in strain gauges to measure from one to four components of force acting
at each fingertip.
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Instrumented
with strain
gauges

X
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ny

nz

fz

fx

fy

FIGURE 8.24: The internal structure of a typical force-sensing wrist.

As an example, Fig. 8.24 is a drawing of the internal structure of a popular style
of wrist-force sensor designed by Scheinman [22]. Bonded to the cross-bar structure
of the device are eight pairs of semiconductor strain gauges. Each pair is wired in a
voltage-divider arrangement. Each time the wrist is queried, eight analog voltages
are digitized and read into the computer. Calibration schemes have been designed
with which to arrive at a constant 6 × 8 calibration matrix that maps these eight
strain measurements into the force–torque vector, F, acting on the end-effector. The
sensed force–torque vector can be transformed to a reference frame of interest, as
we saw in Example 5.8.

Force-Sensor Design Issues

Use of strain gauges to measure force relies on measuring the deflection of a stressed
flexure. Therefore, one of the primary design trade-offs is between the stiffness and
the sensitivity of the sensor. A stiffer sensor is inherently less sensitive.

The stiffness of the sensor also affects the construction of overload protection.
Strain gauges can be damaged by impact loading, and therefore must be protected
against such overloads. Transducer damage can be prevented by having limit stops,
which prevent the flexures from deflecting past a certain point. Unfortunately, a very
stiff sensor might deflect only a few ten-thousandths of an inch. Manufacturing limit
stops with such small clearances is very difficult. Consequently, for many types of
transducers, a certain amount of flexibility must be present in order to make possible
effective limit stops.

Eliminating hysteresis is one of the most cumbersome restrictions in the sensor
design. Most metals used as flexures, if not overstrained, have very little hysteresis.
However, bolted, press-fit, or welded joints near the flexure introduce hysteresis.
Ideally, the flexure and the material near it are made from a single piece of metal.

It is also important to use differential measurements to increase the linear-
ity and disturbance rejection of torque sensors. Different physical configurations of
transducers can eliminate influences due to temperature effects and off-axis forces.
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Foil gauges are relatively durable, but they produce a very small resistance
change at full strain. Eliminating noise in the strain-gauge cabling and amplification
electronics is of crucial importance for a good dynamic range.

Semiconductor strain gauges are much more susceptible to damage through
overload. In their favor, they produce a resistance change about seventy times that
of foil gauges for a given strain. This makes the task of signal processing much simpler
for a given dynamic range.
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EXERCISES

8.1 [15] A robot is to be used for positioning a laser cutting device. The laser produces
a pinpoint, nondivergent beam. For general cutting tasks, how many degrees of
freedom does the positioning robot need? Justify your answer.

8.2 [15] Sketch a possible joint configuration for the laser-positioning robot of Exer-
cise 8.1, assuming that it will be used primarily for cutting at odd angles through
1-inch-thick, 8 × 8-foot plates.

8.3 [17] For a spherical robot like that of Fig. 8.6, if joints 1 and 2 have no limits and
joint 3 has lower limit l and upper limit u, find the structural length index, QL, for
the wrist point of this robot.

8.4 [25] A steel shaft of length a 30 cm and of diameter of 0.2 cm drives the input gear
of a reduction having η = 8. The output gear drives a steel shaft having a length
of 30 cm and a diameter of 0.3 cm. If the gears introduce no compliance of their
own, what is the overall stiffness of the transmission system?

8.5 [20] In Fig. 8.25, a link is driven through a shaft after a gear reduction. Model
the link as rigid with mass of 10 Kg located at a point 30 cm from the shaft axis.
Assume that the gears are rigid and that the reduction, η, is large. The shaft is
steel and must be 30 cm long. If the design specifications call for the center of link

http://www.avagotech.com
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30

η

30

FIGURE 8.25: A link actuated through a shaft after a gear reduction.

mass to undergo accelerations of 2.0 g, what should the shaft diameter be to limit
dynamic deflections to 0.1 radian at the joint angle?

8.6 [15] If the output gear exhibits a stiffness of 1000 Nt-m/radian with the input gear
locked, and the shaft has stiffness of 300 Nt-m/radian, what is the combined stiff-
ness of the drive system in Fig. 8.25?

8.7 [43] Pieper’s criteria for serial-link manipulators state that the manipulator will
be solvable if three consecutive axes intersect at a single point or are parallel.
This is based on the idea that inverse kinematics can be decoupled by looking
at the position of the wrist point independently from the orientation of the wrist
frame. Propose a similar result for the Stewart mechanism in Fig. 8.14, to allow the
forward kinematic solution to be similarly decoupled.

8.8 [20] In the Stewart mechanism of Fig. 8.14, if the 2-DOF universal joints at the base
were replaced with 3-DOF ball-and-socket joints, what would the total number of
degrees of freedom of the mechanism be? Use Grübler’s formula.

8.9 [22] Figure 8.26 shows a simplified schematic of the drive system of joint 4 of the
PUMA 560. The torsional stiffness of the couplings is 100 Nt-m/radian each, that
of the shaft is 400 Nt-m/radian, and each of the reduction pairs has been measured
to have output stiffness of 2000 Nt-m/radian with its input gears fixed. Both the
first and second reductions have η = 6.2 Assuming the structure and bearing are
perfectly rigid, what is the stiffness of the joint (i.e., when the motor’s shaft is
locked)?

8.10 [25] What is the error if one approximates the answer to Exercise 8.9 by consider-
ing just the stiffness of the final speed-reduction gearing?

8.11 [20] Figure 4.14 shows an orthogonal-axis wrist and a nonorthogonal wrist. The
orthogonal-axis wrist has link twists of magnitude 90◦; the nonorthogonal wrist
has link twists of φ and 180◦ − φ in magnitude. Describe the set of orientations
that are unattainable with the nonorthogonal mechanism. Assume that all axes
can turn 360◦, and that links can pass through one another if need be (i.e., the
workspace is not limited by self-collision).

8.12 [18] Write down a general inverse-kinematic solution for the Stewart mechanism
shown in Fig. 8.27. Given the location of {T } relative to the base frame {B}, solve
for the joint-position variables d1 through d6. The Bpi are 3 × 1 vectors which

2None of the numerical values in this exercise is meant to be realistic!
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#3 Gear

#2 Gear

#4 Gear

Connecting rod

#2 Coupling

#1 Coupling

Electric motor

#1 Gear

FIGURE 8.26: Simplified version of the drive train of joint 4 of the PUMA 560 manip-
ulator [23].
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FIGURE 8.27: Stewart mechanism of Exercise 8.12.

locate the base connections of the linear actuators relative to frame {B}. The T qi

are 3 × 1 vectors which locate the upper connections of the linear actuators rela-
tive to the frame {T }.

8.13 [20] The planar two-link of Example 5.3 has the determinant of its Jacobian
given by

det(J (�)) = l1l2s2. (8.38)
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If the sum of the two link lengths, l1 + l2, is constrained to be equal to a con-
stant, what should the relative lengths be in order to maximize the manipulator’s
manipulability as defined by (8.6)?

8.14 [28] For a SCARA robot, given that the sum of the link lengths of link 1 and
link 2 must be constant, what is the optimal choice of relative length in terms
of the manipulability index given in (8.6)? Solving Exercise 8.13 first could be
helpful.

8.15 [35] Show that the manipulability measure defined in (8.6) is also equal to the
product of the eigenvalues of J (�).

8.16 [15] What is the torsional stiffness of a 40-cm aluminum rod with radius 0.1 cm?
8.17 [5] What is the effective “gear” reduction, η, of a belt system having an input pulley

of radius 2.0 cm and an output pulley of radius 12.0 cm?
8.18 [10] How many degrees of freedom are required in a manipulator used to place

cylindrical-shaped parts on a flat plane? The cylindrical parts are perfectly sym-
metrical about their main axes.

8.19 [25] Figure 8.28 shows a three-fingered hand grasping an object. Each finger has
three single-degree-of-freedom joints. The contact points between fingertips and
the object are modeled as “point contact”—that is, the position is fixed, but the
relative orientation is free in all three degrees of freedom. Hence, these point
contacts can be replaced by 3-DOF ball-and-socket joints for the purposes of
analysis. Apply Grübler’s formula to compute how many degrees of freedom the
overall system possesses.

8.20 [23] Figure 8.29 shows an object connected to the ground with three rods. Each rod
is connected to the object with a 2-DOF universal joint, and to the ground with
a 3-DOF ball-and-socket joint. How many degrees of freedom does the system
possess?

8.21 [18] Verify that, if two transmission systems are connected serially, then the equiv-
alent stiffness of the overall system is given by (8.14). It is perhaps simplest to think

FIGURE 8.28: A three-fingered hand in which each finger has three degrees of freedom
grasps an object with “point contact.”
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FIGURE 8.29: Closed loop mechanism of Exercise 8.20.

of the serial connection of two linear springs having stiffness coefficients k1 and k2
and of the resulting equations:

f = k1δx1,

f = k2δx2, (8.39)

f = ksum(δx1 + δx2).

8.22 [20] Derive a formula for the stiffness of a belt-drive system in terms of the pulley
radii (r1 and r2) and the center-to-center distance between the pulleys, dc. Start
from (8.22).

8.23 [19] A pneumatic cylinder is used to drive a linear actuator as shown in Fig. 8.30.
The two rack and pinion mechanisms share common axes with ri = 15 mm
and ro = 40 mm. A steel square-cross-section hollow beam having dimensions
i = 50 mm, wo = 15 mm, and wi = 12 mm is fixed to the output rack as shown in
Fig. 8.30. If compression of the air inside the cylinder is assumed to be isothermal
then it behaves approximately as a linear spring of stiffness kc = 1 Nt/mm. What
is the stiffness of the joint?

l

wo

F

x

FIGURE 8.30: Linear actuator.
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Coupling

lbo ls

FIGURE 8.31: Belt-drive system.

8.24 [19] An electric motor is joined to a pulley of radius r1 = 20 mm, by way of a
coupling having stiffness kc = 100 Nt-m/radian (see Fig. 8.31). A belt of stiffness
kb = 400 kNt/m drives the output pulley, having radius r2 = 80 mm, to which
the steel output shaft is directly coupled. The shaft is made of steel, with length
ls = 200 mm and radius rs = 10 mm. What is the overall stiffness of the
transmission system?

8.25 [18] The tip of a grinding tool is treated as a point contact with the workpiece at
WP = [0 0 100]T . This tool attaches to a force sensor that is at the origin of
{W }. At one instant during the grinding process, the robot is oriented such that

B
WT =

⎡
⎢⎢⎣

−0.712 −0.0502 0.701 412.0
0.449 0.734 0.509 243.0

−0.540 0.677 −0.5 516.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦

and the force sensor measures WfW = [−2 −3 −8]T . What torque reading would
you expect from the sensor? What force is the grinder exerting on the workpiece
in the ẐB direction at this moment?

8.26 [15] How many degrees of freedom does the planar closed-loop mechanism of
Fig. 8.32 possess?

FIGURE 8.32: Planar closed-loop mechanism.
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FIGURE 8.33: Planar closed-loop mechanism.

8.27 [15] How many degrees of freedom does the planar closed-loop mechanism of
Fig. 8.33 possess?

8.28 [25] A steel shaft of length 50 cm and diameter 0.25 cm drives the input gear of
a reduction having η = 10. The output gear drives a steel shaft having a length of
40 cm and a diameter of 0.4 cm. If the gears introduce no compliance of their own,
what is the overall stiffness of the transmission system?

8.29 [15] If the output gear exhibits a stiffness of 1500 Nt-m/radian with the input gear
locked, and the shaft has stiffness of 100 Nt-m/radian, what is the combined stiff-
ness of the drive system in Fig. 8.25?

8.30 [22] Figure 8.26 shows a simplified schematic of the drive system of joint 4 of the
PUMA 560 [23]. The torsional stiffness of the couplings is 150 Nt-m/radian each,
that of the shaft is 300 Nt-m/radian, and each of the reduction pairs has been mea-
sured to have output stiffness of 3000 Nt-m/radian with its input gears fixed. Both
the first and second reductions have η = 4. Assuming the structure and bearing
are perfectly rigid, what is the stiffness of the joint (i.e., when the motor’s shaft is
locked)?

8.31 [15] What is the torsional stiffness of a 30-cm aluminum rod with radius 1 cm?
8.32 [5] What is the effective “gear” reduction, η, of a belt system having an input pulley

of radius 1.2 cm and an output pulley of radius 5.1 cm?

PROGRAMMING EXERCISE (PART 8)

1. Write a program to compute the determinant of a 3 × 3 matrix.
2. Write a program to move the simulated three-link robot in 20 steps along a straight

line and constant orientation from

0
3T =

⎡
⎣

0.25
0.0
0.0

⎤
⎦

to

0
3T =

⎡
⎣

0.95
0.0
0.0

⎤
⎦
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290 Chapter 8 Manipulator-Mechanism Design

in increments of 0.05 meter. At each location, compute the manipulability measure
for the robot at that configuration (i.e., the determinant of the Jacobian). List, or,
better yet, make a plot of the values as a function of the position along the X̂0 axis.
Generate the preceding data for two cases:

(a) l1 = l2 = 0.5 meter, and
(b) l1 = 0.625 meter, l2 = 0.375 meter.

Which manipulator design do you think is better? Explain your answer.

MATLAB EXERCISE 8

Section 8.5 introduced the concept of kinematically redundant robots. This exercise deals
with the resolved-rate control simulation for a kinematically redundant robot. We will
focus on the planar 4-DOF 4R robot with one degree of kinematic redundancy (four
joints to provide three Cartesian motions: two translations, and one rotation). This robot
is obtained by adding a fourth R-joint and a fourth moving link L4 to the planar 3-DOF,
3R robot (of Figures 3.6 and 3.7; the DH parameters can be extended by adding one row
to Figure 3.8).

For the planar 4R robot, derive analytical expressions for the 3 × 4 Jacobian
matrix; then, perform resolved-rate control simulation in MATLAB (as in MATLAB
Exercise 5). The form of the velocity equation is again kẊ = kJ �̇; however, this equation
cannot be inverted by means of the normal matrix inverse, because the Jacobian matrix
is nonsquare (three equations, four unknowns, infinite solutions to �̇). Therefore, let
us use the Moore–Penrose pseudoinverse J ∗ of the Jacobian matrix: J ∗ = J T (JJT )−1.
For the resulting commanded relative joint rates for the resolved-rate algorithm,
�̇ = kJ ∗ kẊ, choose the minimum-norm solution from the infinite possibilities (i.e., this
specific �̇ is as small as possible to satisfy the commanded Cartesian velocities kẊ).

This solution represents the particular solution only—that is, there exists a homo-
geneous solution to optimize performance (such as avoiding manipulator singularities or
avoiding joint limits) in addition to satisfying the commanded Cartesian motion. Perfor-
mance optimization is beyond the scope of this exercise.

Given: L1 = 1.0 m, L2 = 1.0 m, L3 = 0.2 m, L4 = 0.2 m.
The initial angles are:

� =

⎧⎪⎨
⎪⎩

θ1
θ2
θ3
θ4

⎫⎪⎬
⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

−30
◦

70
◦

30
◦

40
◦

⎫⎪⎪⎬
⎪⎪⎭

.

The (constant) commanded Cartesian velocity is

0Ẋ = 0

⎧⎨
⎩

ẋ

ẏ

ωz

⎫⎬
⎭ =

0 ⎧⎨
⎩

−0.2
−0.2

0.2

⎫⎬
⎭ (m/s, rad/s).

Simulate resolved-rate motion, for the particular solution only, for 3 sec, with a
control time step of 0.1 sec. Also, in the same loop, animate the robot to the screen during
each time step, so that you can watch the simulated motion to verify that it is correct.

a) Present four plots (each set on a separate graph):

1. the four joint angles (degrees) � = {θ1 θ2 θ3 θ4}T vs. time;
2. the four joint rates (rad/s) �̇ = {θ̇1 θ̇2 θ̇3 θ̇4}T vs. time;
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3. the joint-rate Euclidean norm
∥∥�̇

∥∥ (vector magnitude) vs. time;

4. the three Cartesian components of 0
HT , X = {x y φ}T (rad is fine for φ so

that it will fit) vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis
names and units.

b) Check your Jacobian matrix results for the initial and final joint-angle sets by means
of the Corke Robotics Toolbox for MATLAB®. Try function jacob0(). Caution:
The toolbox Jacobian functions are for motion of {4} with respect to {0}, not for
{H } with respect to {0} as in the problem assignment. The preceding function gives
the Jacobian result in {0} coordinates; jacobn() would give results in {4} coordinates.



“runall”
2021/5/6
page 292

�

�

�

�

�

�

�

�

This page is intentionally left blank



“runall”
2021/5/17
page 293

�

�

�

�

�

�

�

�

C H A P T E R 9

Linear Control of Manipulators

9.1 INTRODUCTION
9.2 FEEDBACK AND CLOSED-LOOP CONTROL
9.3 SECOND-ORDER LINEAR SYSTEMS
9.4 CONTROL OF SECOND-ORDER SYSTEMS
9.5 CONTROL-LAW PARTITIONING
9.6 TRAJECTORY-FOLLOWING CONTROL
9.7 DISTURBANCE REJECTION
9.8 CONTINUOUS VS. DISCRETE TIME CONTROL
9.9 MODELING AND CONTROL OF A SINGLE JOINT
9.10 ARCHITECTURE OF AN INDUSTRIAL-ROBOT CONTROLLER

9.1 INTRODUCTION

Armed with the previous material, we now have the means to calculate joint-position
time histories that correspond to desired end-effector motions through space. In this
chapter, we will begin to discuss how to cause the manipulator to actually perform
these desired motions.

The control methods that we will discuss fall into the class called linear-control
systems. Strictly speaking, the use of linear-control techniques is valid only when
the system being studied can be modeled mathematically by linear differential equa-
tions. For the case of manipulator control, such linear methods must essentially be
viewed as approximate methods, for, as we have seen in Chapter 6, the dynamics of
a manipulator are more properly represented by a nonlinear differential equation.
Nonetheless, we will see that it is often reasonable to make such approximations, and
it is also the case that these linear methods are the ones most often used in current
industrial practice.

Finally, consideration of the linear approach will serve as a basis for the
more complex treatment of nonlinear control systems in Chapter 10. Although
we approach linear control as an approximate method for manipulator control,
the justification for using linear controllers is not only empirical. In Chapter 10,
we will prove that a certain linear controller leads to a reasonable control system,
even without resorting to a linear approximation of manipulator dynamics. Readers
familiar with linear-control systems might wish to skip the first four sections of the
current chapter.

293
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294 Chapter 9 Linear Control of Manipulators

9.2 FEEDBACK AND CLOSED-LOOP CONTROL

We will model a manipulator as a mechanism that is instrumented with sensors at
each joint to measure the joint angle, and that has an actuator at each joint to apply
a torque on the neighboring (next higher) link.1 Although other physical arrange-
ments of sensors are sometimes used, the vast majority of robots have a position
sensor at each joint. Sometimes, velocity sensors (tachometers) are also present at
the joints. Various actuation and transmission schemes are prevalent in industrial
robots, but many of these can be modeled by supposing that there is a single actuator
at each joint.

We wish to cause the manipulator joints to follow prescribed position trajec-
tories, but the actuators are commanded in terms of torque, so we must use some
kind of control system to compute appropriate actuator commands that will realize
this desired motion. Almost always, these torques are determined by using feedback
from the joint sensors to compute the torque required.

Figure 9.1 shows the relationship between the trajectory generator and the
physical robot. The robot accepts a vector of joint torques, τ , from the control system.
The manipulator’s sensors allow the controller to read the vectors of joint positions,
�, and joint velocities, �̇. All signal lines in Fig. 9.1 carry N × 1 vectors (where N

is the number of joints in the manipulator).
Let’s consider what algorithm might be implemented in the block labeled “con-

trol system” in Fig. 9.1. One possibility is to use the dynamic equation of the robot
(as studied in Chapter 6) to calculate the torques required for a particular trajectory.
We are given �d , �̇d , and �̈d by the trajectory generator, so we could use (6.59)
to compute

τ = M(�d)�̈d + V (�d, �̇d) + G(�d). (9.1)

This computes the torques that our model dictates would be required to realize
the desired trajectory. If our dynamic model were complete and accurate, and no
“noise” or other disturbances were present, continuous use of (9.1) along the desired
trajectory would realize the desired trajectory. Unfortunately, imperfection in the
dynamic model, and the inevitable presence of disturbances, make such a scheme
impractical for use in real applications. Such a control technique is termed an open-
loop scheme, because there is no use made of the feedback from the joint sensors

Trajectory
generator

Control
system

Robot

Ud(t)

Ud(t)
.

Ud(t)
.. U

.
U

τ

FIGURE 9.1: High-level block diagram of a robot-control system.

1Remember, all remarks made concerning rotational joints hold analogously for linear joints, and
vice versa.
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(i.e., (9.1) is a function only of the desired trajectory, �d , and its derivatives, and not
a function of �, the actual trajectory).

Generally, the only way to build a high-performance control system is to make
use of feedback from joint sensors, as indicated in Fig. 9.1. Typically, this feedback is
used to compute any servo error by finding the difference between the desired and
the actual position, and that between the desired and the actual velocity:

E = �d − �,

Ė = �̇d − �̇. (9.2)

The control system can then compute how much torque to require of the actuators
as some function of the servo error. Obviously, the basic idea is to compute actuator
torques that would tend to reduce servo errors. A control system that makes use of
feedback is called a closed-loop system. The “loop” closed by such a control system
around the manipulator is apparent in Fig. 9.1.

The central problem in designing a control system is to ensure that the result-
ing closed-loop system meets certain performance specifications. The most basic such
criterion is that the system remain stable. For our purposes, we will define a system
to be stable if the errors remain “small” when executing various desired trajectories,
even in the presence of some “moderate” disturbances. It should be noted that an
improperly designed control system can sometimes result in unstable performance,
in which servo errors are increased instead of reduced. Hence, the first task of a con-
trol engineer is to prove that his or her design yields a stable system; the second
is to prove that the closed-loop performance of the system is satisfactory. In prac-
tice, such “proofs” range from mathematical proofs based on certain assumptions
and models to more empirical results, such as those obtained through simulation or
experimentation.

Figure 9.1, in which all signals lines represent N × 1 vectors, summarizes the
fact that the manipulator-control problem is a multi-input, multi-output (MIMO)
control problem. In this chapter, we will take a simple approach to constructing a
control system by treating each joint as a separate system to be controlled. Hence, for
an N -jointed manipulator, we will design N independent single-input, single-output
(SISO) control systems. This is the design approach presently adopted by most
industrial-robot suppliers. This independent joint control approach is an approx-
imate method, in that the equations of motion (developed in Chapter 6) are not
independent, but rather are highly coupled. Later, this chapter will present justi-
fication for the linear approach—at least for the case of highly geared manipulators.

9.3 SECOND-ORDER LINEAR SYSTEMS

Before considering the manipulator control problem, let’s step back and start by con-
sidering a simple mechanical system. Figure 9.2 shows a block of mass m attached to
a spring of stiffness k and subject to friction of coefficient b. Figure 9.2 also indicates
the zero position and positive sense of x, the block’s position. Assuming a frictional
force proportional to the block’s velocity, a free-body diagram of the forces acting
on the block leads directly to the equation of motion,

mẍ + bẋ + kx = 0. (9.3)
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x

m

b

k

FIGURE 9.2: Spring–mass system with friction.

Hence, the open-loop dynamics of this one-degree-of-freedom system are described
by a second-order linear constant-coefficient differential equation [1]. The solution
to the differential equation (9.3) is a time function, x(t), that specifies the motion
of the block. This solution will depend on the block’s initial conditions—that is, its
initial position and velocity.

We will use this simple mechanical system as an example with which to review
some basic control system concepts. Unfortunately, it is impossible to do justice to
the field of control theory with only a brief introduction here. We will discuss the
control problem, assuming no more than that the student is familiar with simple dif-
ferential equations. Hence, we will not use many of the popular tools of the control-
engineering trade. For example, Laplace transforms and other common techniques
neither are a prerequisite nor are introduced here. A good reference for the field
is [4].

Intuition suggests that the system of Fig. 9.2 might exhibit several different
characteristic motions. For example, in the case of a very weak spring (i.e., small k)
and very heavy friction (i.e., large b) one imagines that, if the block were perturbed,
it would return to its resting position in a very slow, sluggish manner. However, with
a very stiff spring and very low friction, the block might oscillate several times before
coming to rest. These different possibilities arise because the character of the solution
to (9.3) depends upon the values of the parameters m, b, and k.

From the study of differential equations [1], we know that the form of the solu-
tion to an equation of the form of (9.3) depends on the roots of its characteristic
equation,

ms2 + bs + k = 0. (9.4)

This equation has the roots

s1 = − b

2m
+

√
b2 − 4mk

2m
,

s2 = − b

2m
−

√
b2 − 4mk

2m
. (9.5)

The location of s1 and s2 (sometimes called the poles of the system) in the real–
imaginary plane dictate the nature of the motions of the system. If s1 and s2 are real,
then the behavior of the system is sluggish and nonoscillatory. If s1 and s2 are complex
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(i.e., have an imaginary component), then the behavior of the system is oscillatory.
If we include the special limiting case between these two behaviors, we have three
classes of response to study:

1. Real and Unequal Roots. This is the case when b2 > 4mk; that is, friction dom-
inates, and sluggish behavior results. This response is called overdamped.

2. Complex Roots. This is the case when b2 < 4mk; that is, stiffness dominates,
and oscillatory behavior results. This response is called underdamped.

3. Real and Equal Roots. This is the special case when b2 = 4mk; that is, fric-
tion and stiffness are “balanced,” yielding the fastest possible nonoscillatory
response. This response is called critically damped.

The third case (critical damping) is generally a desirable situation: the system
nulls out nonzero initial conditions and returns to its nominal position as rapidly as
possible, yet without oscillatory behavior.

Real and Unequal Roots

It can easily be shown [by direct substitution into (9.3)] that the solution, x(t), giving
the motion of the block in the case of real, unequal roots has the form

x(t) = c1e
s1t + c2e

s2t , (9.6)

where s1 and s2 are given by (9.5). The coefficients c1 and c2 are constants that can
be computed for any given set of initial conditions (i.e., initial position and velocity
of the block).

Figure 9.3 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are real and unequal, the system exhibits sluggish or overdamped motion.

In cases where one of the poles has a much greater magnitude than the other,
the pole of larger magnitude can be neglected, because the term corresponding
to it will decay to zero rapidly in comparison to the other, dominant pole. This
same notion of dominance extends to higher order systems—for example, often a

Im {s}

s1 s2 Re{s}

x(t)

t

FIGURE 9.3: Root location and response to initial conditions for an overdamped
system.
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third-order system can be studied as a second-order system by considering only two
dominant poles.

EXAMPLE 9.1

Determine the motion of the system in Fig. 9.2 if the parameter values are m = 1,
b = 5, and k = 6, and the block (initially at rest) is released from the position x = −1.

The characteristic equation is

s2 + 5s + 6 = 0, (9.7)

which has the roots s1 = −2 and s2 = −3. Hence, the response has the form

x(t) = c1e
−2t + c2e

−3t . (9.8)

We now use the given initial conditions, x(0) = −1 and ẋ(0) = 0, to compute c1 and
c2. To satisfy these conditions at t = 0, we must have

c1 + c2 = −1

and
−2c1 − 3c2 = 0, (9.9)

which are satisfied by c1 = −3 and c2 = 2. So, the motion of the system for t ≥ 0 is
given by

x(t) = −3e−2t + 2e−3t . (9.10)

Complex Roots

For the case where the characteristic equation has complex roots of the form

s1 = λ + μi,

s2 = λ − μi, (9.11)

it is still the case that the solution has the form

x(t) = c1e
s1t + c2e

s2t . (9.12)

However, equation (9.12) is difficult to use directly, because it involves imaginary
numbers explicitly. It can be shown (see Exercise 9.1) that Euler’s formula,

eix = cos x + i sin x, (9.13)

allows the solution (9.12) to be manipulated into the form

x(t) = c1e
λt cos(μt) + c2e

λt sin(μt). (9.14)

As before, the coefficients c1 and c2 are constants that can be computed for any given
set of initial conditions (i.e., initial position and velocity of the block). If we write the
constants c1 and c2 in the form

c1 = r cos δ,

c2 = r sin δ, (9.15)
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then (9.14) can be written in the form

x(t) = reλt cos(μt − δ), (9.16)

where

r =
√

c2
1 + c2

2,

δ = Atan2(c2, c1). (9.17)

In this form, it is easier to see that the resulting motion is an oscillation whose ampli-
tude is exponentially decreasing toward zero.

Another common way of describing oscillatory second-order systems is in
terms of damping ratio and natural frequency. These terms are defined by the param-
eterization of the characteristic equation given by

s2 + 2ζωns + ω2
n = 0, (9.18)

where ζ is the damping ratio (a dimensionless number between 0 and 1) and ωn is
the natural frequency.2 Relationships between the pole locations and these parame-
ters are

λ = −ζωn

and

μ = ωn

√
1 − ζ 2. (9.19)

In this terminology, μ, the imaginary part of the poles, is sometimes called the
damped natural frequency. For a damped spring–mass system such as the one in
Fig. 9.2, the damping ratio and natural frequency are, respectively,

ζ = b

2
√

km
,

ωn = √
k/m. (9.20)

When no damping is present (b = 0 in our example), the damping ratio becomes
zero; for critical damping (b2 = 4km), the damping ratio is 1.

Figure 9.4 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are complex, the system exhibits oscillatory or underdamped motion.

EXAMPLE 9.2

Find the motion of the system in Fig. 9.2 if the parameter values are m = 1, b = 1,
and k = 1, and the block (initially at rest) is released from the position x = −1.

The characteristic equation is

s2 + s + 1 = 0, (9.21)

2The terms damping ratio and natural frequency can also be applied to overdamped systems, in which
case ζ > 1.0.
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Im {s}

s1

s2

Re{s}

x(t)

t

FIGURE 9.4: Root location and response to initial conditions for an underdamped
system.

which has the roots si = − 1
2 ±

√
3

2 i. Hence, the response has the form

x(t) = e− t
2

(
c1 cos

√
3

2
t + c2 sin

√
3

2
t

)
. (9.22)

We now use the given initial conditions, x(0) = −1 and ẋ(0) = 0, to compute
c1 and c2. To satisfy these conditions at t = 0, we must have

c1 = −1

and
−1

2
c1 +

√
3

2
c2 = 0, (9.23)

which are satisfied by c1 = −1 and c2 = −√
3

3 . So, the motion of the system for t ≥ 0
is given by

x(t) = e− t
2

(
− cos

√
3

2
t −

√
3

3
sin

√
3

2
t

)
. (9.24)

This result can also be put in the form of (9.16), as

x(t) = 2
√

3
3

e− t
2 cos

(√
3

2
t − 120◦

)
. (9.25)

Real and Equal Roots

By substitution into (9.3), it can be shown that, in the case of real and equal roots
(i.e., repeated roots), the solution has the form

x(t) = c1e
s1t + c2te

s2t , (9.26)

where, in this case, s1 = s2 = − b
2m

, so (9.26) can be written

x(t) = (c1 + c2t)e
− b

2m
t . (9.27)
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Im {s}

s1,2 Re{s}

x(t)

t

FIGURE 9.5: Root location and response to initial conditions for a critically damped
system.

In case it is not clear, a quick application of l’Hôpital’s rule [2] shows that, for
any c1, c2, and a,

lim
t→∞(c1 + c2t)e

−at = 0. (9.28)

Figure 9.5 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are real and equal, the system exhibits critically damped motion, the fastest possible
nonoscillatory response.

EXAMPLE 9.3

Work out the motion of the system in Fig. 9.2 if the parameter values are m = 1,
b = 4, and k = 4, and the block (initially at rest) is released from the position x = −1.

The characteristic equation is

s2 + 4s + 4 = 0, (9.29)

which has the roots s1 = s2 = −2. Hence, the response has the form

x(t) = (c1 + c2t)e
−2t . (9.30)

We now use the given initial conditions, x(0) = −1 and ẋ(0) = 0, to calculate
c1 and c2. To satisfy these conditions at t = 0, we must have

c1 = −1

and
−2c1 + c2 = 0, (9.31)

which are satisfied by c1 = −1 and c2 = −2. So, the motion of the system for t ≥ 0 is
given by

x(t) = (−1 − 2t)e−2t . (9.32)
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In Examples 9.1 through 9.3, all the systems were stable. For any passive phys-
ical system like that of Fig. 9.2, this will be the case. Such mechanical systems always
have the properties

m > 0,

b > 0, (9.33)

k > 0.

In the next section, we will see that the action of a control system is, in effect, to
change the value of one or more of these coefficients. It will then be necessary to
consider whether the resulting system is stable.

9.4 CONTROL OF SECOND-ORDER SYSTEMS

Suppose that the natural response of our second-order mechanical system is not what
we wish it to be. Perhaps it is underdamped and oscillatory, and we would like it to be
critically damped; or perhaps the spring is missing altogether (k = 0), so the system
never returns to x = 0 if disturbed. Through the use of sensors, an actuator, and a
control system, we can modify the system’s behavior as desired.

Figure 9.6 shows a damped spring–mass system with the addition of an actu-
ator, with which it is possible to apply a force f to the block. A free-body diagram
leads to the equation of motion,

mẍ + bẋ + kx = f. (9.34)

Let’s also assume that we have sensors capable of detecting the block’s position and
velocity. We now propose a control law which computes the force that should be
applied by the actuator as a function of the sensed feedback:

f = −kpx − kvẋ. (9.35)

Figure 9.7 is a block diagram of the closed-loop system, where the portion to the left
of the dashed line is the control system (usually implemented in a computer), and
that to the right of the dashed line is the physical system. Implicit in the figure are
interfaces between the control computer and the output actuator commands and the
input sensor information.

The control system we have proposed is a position-regulation system—it
simply attempts to maintain the position of the block in one fixed place regardless

x

m

b

k
f

FIGURE 9.6: A damped spring–mass system with an actuator.
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2
2

kp kυ

f
x

x
.SystemS

FIGURE 9.7: A closed-loop control system. The control computer (to the left of the
dashed line) reads sensor input and writes actuator output commands.

of disturbance forces applied to the block. In a later section, we will construct a
trajectory-following control system, which can cause the block to follow a desired
position trajectory.

By equating the open-loop dynamics of (9.34) with the control law of (9.35),
we can derive the closed-loop dynamics as

mẍ + bẋ + kx = −kpx − kvẋ, (9.36)

or
mẍ + (b + kv)ẋ + (k + kp)x = 0, (9.37)

or
mẍ + b′ẋ + k′x = 0, (9.38)

where b′ = b + kv and k′ = k + kp. From (9.37) and (9.38), it is clear that, by set-
ting the control gains, kv and kp, we can cause the closed-loop system to appear
to have any second system behavior that we wish. Often, gains would be chosen
to obtain critical damping (i.e., b′ = 2

√
mk′), and some desired closed-loop stiffness

given directly by k′.
Note that kv and kp could be positive or negative, depending on the parameters

of the original system. However, if b′ or k′ became negative, the result would be
an unstable control system. This instability will be obvious if one writes down the
solution of the second-order differential equation [in the form of (9.6), (9.14), or
(9.26)]. It also makes intuitive sense that, if b′ or k′ is negative, servo errors tend to
get magnified rather than reduced.

EXAMPLE 9.4

If the parameters of the system in Fig. 9.6 are m = 1, b = 1, and k = 1, find gains kp

and kv for a position-regulation control law that results in the system’s being critically
damped with a closed-loop stiffness of 16.0.
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If we wish k′ to be 16.0, then, for critical damping, we require that b′ = 2
√

mk′ =
8.0. Now, k = 1 and b = 1, so we need

kp = 15.0,

kv = 7.0. (9.39)

9.5 CONTROL-LAW PARTITIONING

In preparation for designing control laws for more complicated systems, let us con-
sider a slightly different controller structure for the sample problem of Fig. 9.6. In this
method, we will partition the controller into a model-based portion and a servo por-
tion. The result is that the system’s parameters (i.e., m, b, and k, in this case) appear
only in the model-based portion, and that the servo portion is independent of these
parameters. At the moment, this distinction might not seem important, but it will
become more obviously important as we consider nonlinear systems in Chapter 10.
We will adopt this control-law partitioning approach throughout the book.

The open-loop equation of motion for the system is

mẍ + bẋ + kx = f. (9.40)

We wish to decompose the controller for this system into two parts. In this case, the
model-based portion of the control law will make use of supposed knowledge of m,
b, and k. This portion of the control law is set up such that it reduces the system so
that it appears to be a unit mass. This will become clear when we review Example 9.5.
The second part of the control law makes use of feedback to modify the behavior of
the system. The model-based portion of the control law has the effect of making the
system appear as a unit mass, so the design of the servo portion is very simple—gains
are chosen to control a system composed of a single unit mass (i.e., no friction, no
stiffness).

The model-based portion of the control appears in a control law of the form

f = αf ′ + β, (9.41)

where α and β are functions or constants and are chosen so that, if f ′ is taken as the
new input to the system, the system appears to be a unit mass. With this structure of
the control law, the system equation [the result of combining (9.40) and (9.41)] is

mẍ + bẋ + kx = αf ′ + β. (9.42)

Clearly, in order to make the system appear as a unit mass from the f ′ input, for this
particular system we should choose α and β as follows:

α = m,

β = bẋ + kx. (9.43)

Making these assignments and plugging them into (9.42), we have the system
equation

ẍ = f ′. (9.44)
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FIGURE 9.8: A closed-loop control system employing the partitioned control method.

This is the equation of motion for a unit mass. We now proceed as if (9.44) were the
open-loop dynamics of a system to be controlled. We design a control law to compute
f ′, just as we did before:

f ′ = −kvẋ − kpx. (9.45)

Combining this control law with (9.44) yields

ẍ + kvẋ + kpx = 0. (9.46)

Using this methodology, the setting of the control gains is simple and is independent
of the system parameters; that is,

kv = 2
√

kp (9.47)

must hold for critical damping. Figure 9.8 shows a block diagram of the partitioned
controller used to control the system of Fig. 9.6.

EXAMPLE 9.5

If the parameters of the system in Fig. 9.6 are m = 1, b = 1, and k = 1, find α, β, and
the gains kp and kv for a position-regulation control law that results in the system’s
being critically damped with a closed-loop stiffness of 16.0.

We choose

α = 1,

β = ẋ + x, (9.48)

so that the system appears as a unit mass from the fictitious f ′ input. We then set
gain kp to the desired closed-loop stiffness and set kv = 2

√
kp for critical damping.
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This gives

kp = 16.0,

kv = 8.0. (9.49)

9.6 TRAJECTORY-FOLLOWING CONTROL

Rather than just maintaining the block at a desired location, let us enhance our con-
troller so the block can be made to follow a trajectory. The trajectory is given by a
function of time, xd(t), that specifies the desired position of the block. We assume that
the trajectory is smooth (i.e., the first two derivatives exist) and that our trajectory
generator provides xd , ẋd , and ẍd at all times t . We define the servo error between
the desired and actual trajectory as e = xd − x. A servo-control law that will cause
trajectory following is

f ′ = ẍd + kvė + kpe. (9.50)

We see that (9.50) is a good choice if we combine it with the equation of motion of a
unit mass (9.44), which leads to

ẍ = ẍd + kvė + kpe, (9.51)

or
ë + kvė + kpe = 0. (9.52)

This is a second-order differential equation for which we can choose the coefficients,
so we can design any response we wish. (Often, critical damping is the choice made.)
Such an equation is sometimes said to be written in error space, because it describes
the evolution of errors relative to the desired trajectory. Figure 9.9 shows a block
diagram of our trajectory-following controller.

If our model is perfect (i.e., our knowledge of m, b, and k), and if there is no
noise and no initial error, the block will follow the desired trajectory exactly. If there
is an initial error, it will be suppressed according to (9.52), and thereafter the system
will follow the trajectory exactly.
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FIGURE 9.9: A trajectory-following controller for the system in Fig. 9.6.
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9.7 DISTURBANCE REJECTION

One of the purposes of a control system is to provide disturbance rejection, that is,
to maintain good performance (i.e., minimize errors) even in the presence of some
external disturbances or noise. In Fig. 9.10, we show the trajectory-following con-
troller with an additional input: a disturbance force fdist. An analysis of our closed-
loop system leads to the error equation

ë + kvė + kpe = fdist/m. (9.53)

Equation (9.53) is that of a differential equation driven by a forcing function.
If it is known that fdist is bounded—that is, that a constant a exists such that

max
t

fdist(t) < a, (9.54)

then the solution of the differential equation, e(t), is also bounded. This result is due
to a property of stable linear systems known as bounded-input, bounded-output or
BIBO stability [3, 4]. This very basic result ensures that, for a large class of possible
disturbances, we can at least be assured that the system remains stable.

Steady-State Error

Let’s consider the simplest kind of disturbance—namely, that fdist is a constant. In
this case, we can perform a steady-state analysis by analyzing the system at rest (i.e.,
the derivatives of all system variables are zero). Setting derivatives to zero in (9.53)
yields the steady-state equation

kpe = fdist/m, (9.55)

or
e = fdist/kpm. (9.56)

The value of e given by (9.56) represents a steady-state error. Thus, it is clear that
the higher the position gain kp, the smaller will be the steady-state error.
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FIGURE 9.10: A trajectory-following control system with a disturbance acting.
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Addition of an Integral Term

In order to eliminate steady-state error, a modified control law is sometimes used.
The modification involves the addition of an integral term to the control law. The
control law becomes

f ′ = ẍd + kvë + kpe + ki

∫
edt, (9.57)

which results in the error equation

ë + kvė + kpe + ki

∫
edt = fdist/m. (9.58)

The term is added so that the system will have no steady-state error in the presence
of constant disturbances. If e(t) = 0 for t < 0, we can write (9.58) for t > 0 as

...
e + kvë + kpė + kie = ḟdist/m, (9.59)

which, in the steady state (for a constant disturbance), becomes

kie = 0, (9.60)

so
e = 0. (9.61)

With this control law, the system becomes a third-order system, and one can
solve the corresponding third-order differential equation to work out the response
of the system to initial conditions. Often, ki is kept quite small so the third-order
system is “close” to the second-order system without this term (i.e., a dominant-pole
analysis can be performed). The form of control law (9.57) is called a PID control law,
or “proportional, integral, derivative” control law [4]. For simplicity, the displayed
equations generally do not show an integral term in the control laws that we develop
in this book.

9.8 CONTINUOUS VS. DISCRETE TIME CONTROL

In the control systems we have discussed, we implicitly assumed that the control
computer performs the computation of the control law in zero time (i.e., infinitely
fast), so the value of the actuator force f is a continuous function of time. Of course,
in reality, the computation requires some time, and the resulting commanded force
is therefore a discrete “staircase” function. We shall employ this approximation of a
very fast control computer throughout the book. This approximation is good if the
rate at which new values of f are computed is much faster than the natural frequency
of the system being controlled. In the field of discrete time control or digital control,
one does not make this approximation, but rather takes the servo rate of the control
system into account when analyzing the system [3].

We will generally assume that the computations can be performed quickly
enough that our continuous time assumption is valid. This raises a question: How
quick is quick enough? There are several points that need to be considered in
choosing a sufficiently fast servo (or sample) rate:
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Tracking reference inputs: The frequency content of the desired or reference
input places an absolute lower bound on the sample rate. The sample rate must
be at least twice the bandwidth of reference inputs. This is usually not the lim-
iting factor.

Disturbance rejection: In disturbance rejection, an upper bound on perfor-
mance is given by a continuous-time system. If the sample period is longer than
the correlation time of the disturbance effects (assuming a statistical model for
random disturbances), then these disturbances will not be suppressed. Perhaps
a good rule of thumb is that the sample period should be 10 times shorter than
the correlation time of the noise [3].

Antialiasing: Any time an analog sensor is used in a digital control scheme,
there will be a problem with aliasing unless the sensor’s output is strictly band
limited. In most cases, sensors do not have a band limited output, and so the
sample rate should be chosen such that the amount of energy that appears in
the aliased signal is small.

Structural resonances: We have not included bending modes in our character-
ization of a manipulator’s dynamics. All real mechanisms have finite stiffness,
and so will be subject to various kinds of vibrations. If it is important to sup-
press these vibrations (and it often is), we must choose a sample rate at least
twice the natural frequency of these resonances. We will return to the topic of
resonance later in this chapter.

9.9 MODELING AND CONTROL OF A SINGLE JOINT

In this section, we will develop a simplified model of a single rotary joint of a manip-
ulator. A few assumptions will be made that will allow us to model the resulting
system as a second-order linear system. For a more complete model of an actuated
joint, see [5].

A common actuator found in many industrial robots is the direct current (DC)
torque motor (as in Fig. 8.18). The nonturning part of the motor (the stator) con-
sists of a housing, bearings, and either permanent magnets or electromagnets. These
stator magnets establish a magnetic field across the turning part of the motor (the
rotor). The rotor consists of a shaft and windings through which current moves to
power the motor. The current is conducted to the windings via brushes, which make
contact with the commutator. The commutator is wired to the various windings (also
called the armature) in such a way that torque is always produced in the desired
direction. The underlying physical phenomenon [6] that causes a motor to generate
a torque when current passes through the windings can be expressed as

F = qV × B, (9.62)

where charge q, moving with velocity V through a magnetic field B, experiences a
force F . The charges are those of electrons moving through the windings, and the
magnetic field is that set up by the stator magnets. Generally, the torque-producing
ability of a motor is stated by means of a single motor torque constant, which relates
armature current to the output torque as

τm = kmia. (9.63)
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When a motor is rotating, it acts as a generator, and a voltage develops across the
armature. A second motor constant, the back emf constant,3 describes the voltage
generated for a given rotational velocity:

v = keθ̇m. (9.64)

Generally, the fact that the commutator is switching the current through various sets
of windings causes the torque produced to contain some torque ripple. Although
sometimes important, this effect can usually be ignored. (In any case, it is quite dif-
ficult to model—and quite hard to compensate for, even if it is modeled.)

Motor-Armature Inductance

Figure 9.11 shows the electric circuit of the armature. The major components are a
voltage source, va , the inductance of the armature windings, la , the resistance of the
armature windings, ra , and the generated back emf, v. The circuit is described by a
first-order differential equation:

la i̇a + raia = va − keθ̇m. (9.65)

It is generally desirable to control the torque generated by the motor (rather than
the velocity) with electronic motor driver circuitry. These drive circuits sense the cur-
rent through the armature, and continuously adjust the voltage source va so that a
desired current ia flows through the armature. Such a circuit is called a current ampli-
fier motor driver [7]. In these current-drive systems, the rate at which the armature
current can be commanded to change is limited by the motor inductance la and by
an upper limit on the voltage capability of the voltage source va . The net effect is
that of a low-pass filter between the requested current and output torque.

Our first simplifying assumption is that the inductance of the motor can be
neglected. This is a reasonable assumption when the natural frequency of the closed-
loop control system is quite low compared to the cut-off frequency of the implicit
low-pass filter in the current-drive circuitry due to the inductance. This assumption,
along with the assumption that torque ripple is a negligible effect, means that we can
essentially command torque directly. Although there might be a scale factor (such
as km) to contend with, we will assume that the actuator acts as a pure torque source
that we can command directly.

1

2

υA

rA lA

iA

1

2

keθm
.

FIGURE 9.11: The armature circuit of a DC torque motor.
3“emf” stands for electromotive force.
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FIGURE 9.12: Mechanical model of a DC torque motor connected through gearing to
an inertial load.

Effective Inertia

Figure 9.12 shows the mechanical model of the rotor of a DC torque motor, con-
nected through a gear reduction to an inertial load. The torque applied to the rotor,
τm, is given by (9.63) as a function of the current ia flowing in the armature circuit.
The gear ratio (η) causes an increase in the torque seen at the load, and a reduction
in the speed of the load, given by

τ = ητm,

θ̇ = (1/η)θ̇m, (9.66)

where η > 1. Writing a torque balance for this system in terms of torque at the rotor
yields

τm = Imθ̈m + bmθ̇m + (1/η)
(
I θ̈ + bθ̇

)
, (9.67)

where Im and I are the inertias of the motor rotor and of the load, respectively, and
bm and b are viscous friction coefficients for the rotor and load bearings, respectively.
Using the relations (9.66), we can write (9.67) in terms of motor variables as

τm =
(

Im + I

η2

)
θ̈m +

(
bm + b

η2

)
θ̇m (9.68)

or in terms of load variables as

τ = (I + η2Im)θ̈ + (b + η2bm)θ̇ . (9.69)

The term I + η2Im is sometimes called the effective inertia “seen” at the output
(link side) of the gearing. Likewise, the term b + η2bm can be called the effective
damping. Note that, in a highly geared joint (i.e., η � 1), the inertia of the motor
rotor can be a significant portion of the combined effective inertia. It is this effect
that allows us to make the assumption that the effective inertia is a constant.
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We know from Chapter 6 that the inertia, I , of a joint of the mechanism actually
varies with the configuration and load. However, in highly geared robots, the varia-
tions represent a smaller percentage than they would in a direct-drive manipulator
(i.e., η = 1). To ensure that the motion of the robot link is never underdamped, the
value used for I should be the maximum of the range of values that I takes on;
we’ll call this value Imax. This choice results in a system that is critically damped
or overdamped in all situations. In Chapter 10, we will deal with varying inertia
directly, and we will not have to make this assumption.

EXAMPLE 9.6

If the apparent link inertia, I , varies between 2 and 6 Kg-m2, the rotor inertia is
Im = 0.01, and the gear ratio is η = 30, what are the minimum and maximum of the
effective inertia?

The minimum effective inertia is

Imin + η2Im = 2.0 + (900)(0.01) = 11.0; (9.70)

the maximum is
Imax + η2Im = 6.0 + (900)(0.01) = 15.0. (9.71)

Hence, we see that, as a percentage of the total effective inertia, the variation of
inertia is reduced by the gearing.

Unmodeled Flexibility

The other major assumption we have made in our model is that the gearing, the
shafts, the bearings, and the driven link are not flexible. In reality, all of these ele-
ments have finite stiffness, and their flexibility, if modeled, would increase the order
of the system. The argument for ignoring flexibility effects is that, if the system is suf-
ficiently stiff, the natural frequencies of these unmodeled resonances are very high,
and can be neglected compared to the influence of the dominant second-order poles
that we have modeled.4 The term “unmodeled” refers to the fact that, for purposes
of control-system analysis and design, we neglect these effects and use a simpler
dynamic model, such as (9.69).

Because we have chosen not to model structural flexibilities in the system, we
must be careful not to excite these resonances. A rule of thumb [8] is that, if the lowest
structural resonance is ωres, then we must limit our closed-loop natural frequency
according to

ωn ≤ 1
2
ωres. (9.72)

This provides some guidance on how to choose gains in our controller. We have
seen that increasing gains leads to faster response and lower steady-state error, but
we now see that unmodeled structural resonances limit the magnitude of gains.
Typical industrial manipulators have structural resonances in the range from 5 Hz
to 25 Hz [8]. Recent designs using direct-drive arrangements that do not contain

4This is basically the same argument we used to neglect the pole due to the motor inductance. Including
it would also have raised the order of the overall system.
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flexibility introduced by reduction and transmission systems have their lowest
structural resonances as high as 70 Hz [9].

EXAMPLE 9.7

Consider the system of Fig. 9.7 with the parameter values m = 1, b = 1, and k = 1.
Additionally, it is known that the lowest unmodeled resonance of the system is at
8 radians/second. Find α, β, and gains kp and kv for a position-control law so the
system is critically damped, doesn’t excite unmodeled dynamics, and has as high a
closed-loop stiffness as possible.

We choose

α = 1,

β = ẋ + x, (9.73)

so the system appears as a unit mass from the fictitious f ′ input. Using our rule of
thumb (9.72), we choose the closed-loop natural frequency to be ωn = 4 radians/
second. From (9.18) and (9.46), we have kp = ω2

n, so

kp = 16.0,

kv = 8.0. (9.74)

Estimating Resonant Frequency

The same sources of structural flexibility discussed in Chapter 8 give rise to reso-
nances. In each case where a structural flexibility can be identified, an approximate
analysis of the resulting vibration is possible if we can describe the effective mass
or inertia of the flexible member. This is done by approximating the situation by a
simple spring–mass system, which, as given in (9.20), exhibits the natural frequency

ωn = √
k/m, (9.75)

where k is the stiffness of the flexible member, and m is the equivalent mass displaced
in vibrations.

EXAMPLE 9.8

A shaft (assumed massless) with a stiffness of 400 Nt-m/radian drives a rotational
inertia of 1 Kg-m2. If the shaft stiffness was neglected in the modeling of the dynam-
ics, what is the frequency of this unmodeled resonance?

Using (9.75), we have

ωres = √
400/1 = 20 rad/second = 20/(2π)Hz ∼= 3.2 Hz. (9.76)

For the purposes of a rough estimate of the lowest resonant frequency of beams
and shafts, [10] suggests using a lumped model of the mass. We already have formulas
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m

I

0.23 m

0.33 I

FIGURE 9.13: Lumped models of beams for estimation of lowest lateral and torsional
resonance.

for estimating stiffness at the ends of beams and shafts; these lumped models pro-
vide the effective mass or inertia needed for our estimation of resonant frequency.
Figure 9.13 shows the results of an energy analysis [10] which suggests that a beam
of mass m be replaced by a point mass at the end of 0.23 m and, likewise, that a
distributed inertia of I be replaced by a lumped 0.33 I at the end of the shaft.

EXAMPLE 9.9

A link of mass 4.347 Kg has an end-point lateral stiffness of 3600 Nt/m. Assuming
the drive system is completely rigid, the resonance due to the flexibility of the link
will limit control gains. What is ωres?

The 4.347 Kg mass is distributed along the link. Using the method of Fig. 9.13,
the effective mass is (0.23)(4.347) ∼= 1.0 Kg. Hence, the vibration frequency is

ωres = √
3600/1.0 = 60 radians/second = 60/(2π)Hz ∼= 9.6 Hz. (9.77)

The inclusion of structural flexibilities in the model of the system used for
control-law synthesis is required if we wish to achieve closed-loop bandwidths higher
than those given by (9.75). The resulting system models are of high order, and the
control techniques applicable to this situation become quite sophisticated. Such con-
trol schemes are currently beyond the state of the art of industrial practice, but are
an active area of research [11, 12].

Control of a Single Joint

In summary, we make the following three major assumptions:

1. The motor inductance la can be neglected.
2. Taking into account high gearing, we model the effective inertia as a constant

equal to Imax + η2Im.
3. Structural flexibilities are neglected, except that the lowest structural resonance

ωres is used in setting the servo gains.
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With these assumptions, a single joint of a manipulator can be controlled with
the partitioned controller given by

α = Imax + η2Im,

β = (b + η2bm)θ̇, (9.78)

τ ′ = θ̈d + kvė + kpe. (9.79)

The resulting system closed-loop dynamics are

ë + kvė + kpe = τdist, (9.80)

where the gains are chosen as

kp = ω2
n = 1

4
ω2

res,

kv = 2
√

kp = ωres. (9.81)

9.10 ARCHITECTURE OF AN INDUSTRIAL-ROBOT CONTROLLER

To give an idea of what a typical industrial robot’s control architecture looks like,
let’s briefly describe a fictitious, but representative controller. Very often, a sim-
ple two-level hierarchy is used with a top-level CPU acting as the “master” of the
control system. The master computer passes commands to each of the lower-level
controllers, typically one per controlled joint. Each of the lower-level controllers con-
trols a joint servo, often running a simple PID control law not unlike that presented
earlier in this chapter. Each joint is typically instrumented with an optical encoder
for position feedback. It is rare that a robot would have tachometers or another form
of velocity sensor; rather, velocity is estimated by numerical differencing in the local
joint controller.

In order to command torques to the DC torque motors found in most robots,
each low-level CPU is interfaced to a digital-to-analog (DAC) converter so that
motor currents can be commanded to the current-driver circuits. The current flowing
through the motor is controlled in analog circuitry by adjusting the voltage across the

CPU Interface

CPU

CPU

CPU

CPU

CPU

CPU

Joint

Joint

Joint

Joint

Joint

Joint

FIGURE 9.14: Hierarchical computer architecture that forms a typical robot control
system.
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FIGURE 9.15: Functional blocks of a joint-control system.

armature as needed to maintain the desired armature current. A block diagram of
this is shown in Fig. 9.15.

At a fixed set-point update rate, the master CPU sends a new position com-
mand to the low-level joint controllers. The joint controllers, running at a high servo-
rate, keep the joint following these position commands.

The master computer is also interpreting the high-level language that describes
the robot program, as well as performing inverse-kinematic functions and path plan-
ning functions. Typically, the master computer is also interfaced to a teach pendant.
A teach pendant is a handheld button box that allows the operator to move the robot
around in a variety of modes. Using a teach pendant is one of the ways in which a
robot can be taught the locations that it must move to during its task.

BIBLIOGRAPHY

[1] W. Boyce and R. DiPrima, Elementary Differential Equations, 3rd edition, John Wiley
and Sons, New York, 1977.

[2] E. Purcell, Calculus with Analytic Geometry, Meredith Corporation, New York, 1972.

[3] G. Franklin and J.D. Powell, Digital Control of Dynamic Systems, Addison-Wesley,
Reading, MA, 1980.

[4] G. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems,
Addison-Wesley, Reading, MA, 1986.

[5] J. Luh, “Conventional Controller Design for Industrial Robots—a Tutorial,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-13, No. 3, June 1983.

[6] D. Halliday and R. Resnik, Fundamentals of Physics, Wiley, New York 1970.

[7] Y. Koren and A. Ulsoy, “Control of DC Servo-Motor Driven Robots,” Proceedings of
Robots 6 Conference, SME, Detroit, March 1982.

[8] R.P. Paul, Robot Manipulators, MIT Press, Cambridge, MA, 1981.

[9] H. Asada and K. Youcef-Toumi, Direct-Drive Robots—Theory and Practice, MIT
Press, Cambridge, MA, 1987.

[10] J. Shigley, Mechanical Engineering Design, 3rd edition, McGraw-Hill, New York,
1977.



“runall”
2021/5/17
page 317

�

�

�

�

�

�

�

�

Exercises 317

[11] W. Book, “Recursive Lagrangian Dynamics of Flexible Manipulator Arms,” The Inter-
national Journal of Robotics Research, Vol. 3, No. 3, 1984.

[12] R. Cannon and E. Schmitz, “Initial Experiments on the End-Point Control of a Flex-
ible One Link Robot,” The International Journal of Robotics Research, Vol. 3, No. 3,
1984.

[13] R.J. Nyzen, “Analysis and Control of an Eight-Degree-of-Freedom Manipulator,” Ohio
University Master’s Thesis, Mechanical Engineering, Dr. Robert L. Williams II, Advi-
sor, August 1999.

[14] R.L. Williams II, “Local Performance Optimization for a Class of Redundant Eight-
Degree-of-Freedom Manipulators,” NASA Technical Paper 3417, NASA Langley
Research Center, Hampton, VA, March 1994.

EXERCISES
9.1 [20] For a second-order differential equation with complex roots

s1 = λ + μi,

s2 = λ − μi,

show that the general solution

x(t) = c1e
s1t + c2e

s2t ,

can be written
x(t) = c1e

λt cos(μt) + c2e
λt sin(μt).

9.2 [13] Compute the motion of the system in Fig. 9.2 if the parameter values are m =
1, b = 3, and k = 2, and the block (initially at rest) is released from the position
x = 2.

9.3 [13] Compute the motion of the system in Fig. 9.2 if the parameter values are m =
2, b = 4, and k = 2, and the block (initially at rest) is released from the position
x = 1.

9.4 [13] Compute the motion of the system in Fig. 9.2 if the parameter values are m =
2, b = 8, and k = 10, and the block (initially at rest) is released from the position
x = 4.

9.5 [15] Compute the motion of the system in Fig. 9.2 if the parameter values are m =
2, b = 14, and k = 20, and the block is released from the position x = 2 with an
initial velocity of ẋ = 4.

9.6 [15] Use the (1, 1) element of (6.60) to compute the variation (as a percentage of
the maximum) of the inertia “seen” by joint 1 of this robot as it changes configu-
ration. Use the numerical values

l1 = l2 = 0.25 m,

m1 = 1.0 Kg,

m2 = 0.8 Kg.

Consider that the robot is direct drive and that the rotor inertia is negligible.
9.7 [17] Repeat Exercise 9.6 for the case of a geared robot (use η = 10) and a rotor

inertia or Im = 0.005 Kg m2.
9.8 [18] Consider the system of Fig. 9.6 with the parameter values m = 1, b = 6, and

k = 10. The system is also known to possess an unmodeled resonance at ωres =
8.0 radians/second. Determine the gains kv and kp that will critically damp the
system with as high a stiffness as is reasonable.
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9.9 [25] In a system like that of Fig. 9.12, the inertial load, I, varies between 2 and
3 Kg-m2. The rotor inertia is Im = 0.008 Kg-m2, and the gear ratio is η = 12.
The system possesses unmodeled resonances at 6.0, 8.0, and 10.0 radians/second.
Design α and β of the partitioned controller, and give the values of kp and kv such
that the system is never underdamped and never excites resonances, but is as stiff
as possible.

9.10 [18] A 1-Kg robot link of length 50 cm has an approximately round hollow cross
section with outer and inner diameters of 5 cm and 4 cm, respectively. The robot
link is made of aluminum with modulus of elasticity 68 × 109 Nt/m2. Determine
the resonant frequency that is caused by the beam flexibility.

9.11 [15] A robot link with an inertia of 1.2 Kg-m2 is directly driven through a massless
shaft of stiffness 800 Nt-m/radian. Determine the resonant frequency.

9.12 [18] A robot link with an inertia of 1.2 Kg-m2 is driven through the output of a
rigid gear pair with η = 10. A massless shaft of stiffness 800 Nt-m/radian drives
the input of the rigid gear pair. Determine the resonant frequency.

9.13 [25] A robot link with an inertia of 1.2 Kg-m2 is driven through the output of a rigid
gear pair with η = 10. A shaft of stiffness 800 Nt-m/radian and inertia 0.05 Kg-m2

drives the input of the rigid gear pair. Determine the resonant frequency.
9.14 [28] In a system like that of Fig. 9.12, the inertial load, I, varies between 2 and

3 Kg-m2. The rotor inertia is Im = 0.008 Kg-m2, and the gear ratio is η = 12. The
system possesses an unmodeled resonance due to an end-point stiffness of the link
of 1800 Nt-m/radian. Design α and β of the partitioned controller, and give the
values of kp and kv such that the system is never underdamped and never excites
resonances, but is as stiff as possible.

9.15 [25] A rigid gear pair η = 10 drives a robot with inertia 2 Kg-m2. The input and
output shafts (both with diameter 2.5 cm) are made of steel with shear modulus
75 × 109 Nt/m2. The input and output shafts have the length of 20 cm and 15 cm,
respectively. Determine the resonant frequency.

9.16 [9] Provide some examples of disturbances for a joint’s trajectory-following con-
trol system as shown in Fig. 9.10.

9.17 [10] A robot link with an inertia of 1.2 Kg-m2 is driven through the output of a
rigid gear pair with η = 10. A massless shaft of stiffness 800 Nt-m/radian drives the
input of the rigid gear pair. Determine the minimum sampling rate and maximum
closed-loop frequency suitable for the system.

9.18 [17] A gear pair with η = 8 is directly connected to a motor with a motor inertia
of 0.015 Kg-m2. The output gear drives a 3-Kg steel shaft (shear modulus 75 ×
109 Nt/m2) of diameter 4 cm, length 30 cm. Determine the resonant frequency
due this transmission system if the input shaft to the gear pair is assumed to be
massless, frictionless, and rigid.

9.19 [27] Two different third-order systems A and B have roots of sA = −1, −2 ± 5i

and sB = −12, −2 ± 5i, respectively. Which of the two systems is more accurately
approximated by a second-order system C with roots sC = −2 ± 5i?
Plot the following system time responses from time 0 ≤ t ≤ 5 to confirm your
answer.

xA = 20 + (4 sin(5t) − 10 cos(5t))e−2t − 10e−t

xB = 20 + (4 sin(5t) − 10 cos(5t))e−2t − 10e−12t

xC = 20 + (4 sin(5t) − 20 cos(5t))e−2t
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9.20 [16] Determine α, β, kp , and kv required for critical damping and ωn = 1
2ωres if the

system shown in Fig. 9.6 has mass m = 6, damping coefficient b = 2, and stiffness
k = 8.

9.21 [13] Compute the motion of the system in Fig. 9.2 if the parameter values are m =
6, b = 10, and k = 4, and the block (initially at rest) is released from the position
x = 6.

9.22 [18] Consider the system of Fig. 9.6 with the parameter values m = 4, b = 6, and
k = 16. The system is also known to possess an unmodeled resonance at ωres =
8.0 radians/second. Determine the gains kv and kp that will critically damp the
system with as high a stiffness as is reasonable.

9.23 [25] A robot link with an inertia of 0.6 Kg-m2 is driven through the output of a rigid
gear pair with η = 12, which is driven by an input shaft of inertia 0.1 Kg-m2. Deter-
mine the required shaft stiffness if ωres is to be greater than 100 radians/second.

9.24 [25] A rigid gear pair η = 8 drives a link with inertia varying between 4 and
8 Kg-m2. The input and output shafts (both with diameter 0.5 cm) are made of
steel (shear modulus 75 × 109 Nt/m2). The input and output shafts have the
length of 20 cm and 15 cm, respectively. Determine the range of resonant
frequency.

PROGRAMMING EXERCISE (PART 9)

We wish to simulate a simple trajectory-following control system for the three-link planar
arm. This control system will be implemented as an independent-joint PD (proportional
plus derivative) control law. Set the servo gains to achieve closed-loop stiffnesses of 175.0,
110.0, and 20.0 for joints 1 through 3 respectively. Try to achieve approximate critical
damping.

Use the simulation routine UPDATE to simulate a discrete-time servo running at
100 Hz—that is, calculate the control law at 100 Hz, not at the frequency of the numerical
integration process. Test the control scheme on the following tests:

1. Start the arm at � = (60,−110, 20) and command it to stay there until time = 3.0,
when the set-points should instantly change to � = (60,−50, 20). That is, give a
step input of 60 degrees to joint 2. Record the error–time history for each joint.

2. Control the arm to follow the cubic-spline trajectory from Programming Exercise
Part 7. Record the error–time history for each joint.

MATLAB EXERCISE 9

This exercise focuses on linearized independent joint-control simulation for the shoulder
joint (joint 2) of the NASA eight-axis AAI ARMII (Advanced Research Manipulator II)
manipulator arm—see [14]. Familiarity with linear classical feedback-control systems,
including block diagrams and Laplace transforms, is assumed. We will use Simulink, the
graphical user interface of MATLAB.

Figure 9.16 shows a linearized open-loop system-dynamics model for the ARMII
electromechanical shoulder joint/link, actuated by an armature-controller DC servomo-
tor. The open-loop input is reference voltage Vref (boosted to armature voltage via an
amplifier), and the output of interest is the load shaft angle ThetaL. The figure also shows
the feedback-control diagram, where the load-shaft angle is sensed via an optical encoder
and provided as feedback to the PID controller. The table describes all system parameters
and variables.

If we reflect the load shaft inertia and damping to the motor shaft, the effective
polar inertia and damping coefficient are J = JM + JL(t)/n2 and C = CM + CL/n2. By
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FIGURE 9.16: Linearized open-loop system-dynamics model for the ARMII electro-
mechanical shoulder joint/link, actuated by an armature-controller DC servomotor.

virtue of the large gear ratio n, these effective values are not much different from the
motor-shaft values. Thus, the gear ratio allows us to ignore variations in the configuration-
dependent load-shaft inertia JL(t) and just set a reasonable average value.

The ARMII shoulder joint constant parameters are given in the accompanying
table [13]. Note that we can use the English units directly, because their effect cancels out
inside the control diagram. Also, we can directly use deg units for the angle. Develop a
Simulink model to simulate the single-joint control model from the model and feedback-
control diagram shown; use the specific parameters from the table. For the nominal case,
determine the PID gains by trial and error for “good” performance (reasonable percent
overshoot, rise time, peak time, and settling time). Simulate the resulting motion for mov-
ing this shoulder joint for a step input of 0 to 60 deg. Plot the simulated load-angle value
over time, plus the load-shaft angular velocity over time. In addition, plot the control
effort—that is, the armature voltage Va over time. (On the same graph, also give the
back emf Vb.)

Now, try some changes—Simulink is so easy and enjoyable to change:

1) The step input is frustrating for controller design, so try a ramped step input instead:
Ramp from 0 to 60 deg in 1.5 sec, then hold the 60-deg command for all time greater
than 1.5 sec. Redesign PID gains and restimulate.

2) Investigate whether the inductor L is significant in this system. (The electrical sys-
tem rises much faster than the mechanical system—this effect can be represented
by time constants.)

3) We don’t have a good estimate for the load inertia and damping (JL and CL). With
your best PID gains from before, investigate how big these values can grow (scale
the nominal parameters up equally) before they affect the system.
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TABLE 9.1: ARMII shoulder joint constant parameters.

Va(t) armature
voltage

τM(t) generated
motor
torque

τL(t) load torque

L = 0.0006H armature
induc-
tance

θM(t) motor shaft
angle

θL(t) load shaft
angle

R = 1.40� armature
resis-
tance

ωM(t) motor shaft
velocity

ωL(t) load shaft
velocity

ia(t) armature
current

JM = 0.00844
lbf -in-s2

lumped
motor polar
inertia

JL(t) = 1
lbf -in-s2

lumped load
polar inertia

Vb(t) back emf
voltage

CM = 0.00013
lbf -in/deg/s

motor shaft
viscous
damping
coefficient

CL = 0.5
lbf -
in/deg/s

load shaft
viscous
damping
coefficient

Ka = 12 amplifier
gain

n = 200 gear ratio g = 0
in/s2

gravity
(ignore
gravity at
first)

Kb = 0.00867
V/deg/s

back emf
constant

KM = 4.375
lbf -in/A

torque con-
stant

Ke = 1 encoder
transfer
function

4) Now, include the effect of gravity as a disturbance to the motor torque TM . Assume
that the moving robot mass is 200 lb and the moving length beyond joint 2 is 6.4 feet.
Test for the nominal “good” PID gains you found; redesign if necessary. The shoul-
der load angle θ2 zero configuration is straight up.
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C H A P T E R 10

Nonlinear Control
of Manipulators

10.1 INTRODUCTION
10.2 NONLINEAR AND TIME-VARYING SYSTEMS
10.3 MULTI-INPUT, MULTI-OUTPUT CONTROL SYSTEMS
10.4 THE CONTROL PROBLEM FOR MANIPULATORS
10.5 PRACTICAL CONSIDERATIONS
10.6 CURRENT INDUSTRIAL-ROBOT CONTROL SYSTEMS
10.7 LYAPUNOV STABILITY ANALYSIS
10.8 CARTESIAN-BASED CONTROL SYSTEMS
10.9 ADAPTIVE CONTROL

10.1 INTRODUCTION

In the previous chapter, we made several approximations to allow a linear analysis of
the manipulator-control problem. Most important among these approximations was
that each joint could be considered independent, and that the inertia “seen” by each
joint actuator was constant. In implementations of linear controllers as introduced
in the previous chapter, this approximation results in nonuniform damping through-
out the workspace and other undesirable effects. In this chapter, we will introduce
a more advanced control technique for which this assumption will not have to
be made.

In Chapter 9, we modeled the manipulator by n independent second-order dif-
ferential equations and based our controller on that model. In this chapter, we will
base our controller design directly on the n × 1-nonlinear vector differential equa-
tion of motion, derived in Chapter 6 for a general manipulator.

The field of nonlinear control theory is large; we must therefore restrict our
attention to one or two methods that seem well suited to mechanical manipula-
tors. Consequently, the major focus of the chapter will be one particular method,
apparently first proposed in [1] and named the computed-torque method in [2, 3].
We will also introduce one method of stability analysis of nonlinear systems, known
as Lyapunov’s method [4].

To begin our discussion of nonlinear techniques for controlling a manipula-
tor, we return again to a very simple single-degree-of-freedom mass–spring friction
system.

323
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10.2 NONLINEAR AND TIME-VARYING SYSTEMS

In the preceding development, we dealt with a linear constant-coefficient differential
equation. This mathematical form arose because the mass–spring friction system of
Fig. 9.6 was modeled as a linear time-invariant system. For systems whose parameters
vary in time or systems that by nature are nonlinear, solutions are more difficult.

When nonlinearities are not severe, local linearization can be used to derive
linear models that are approximations of the nonlinear equations in the neighbor-
hood of an operating point. Unfortunately, the manipulator-control problem is not
well-suited to this approach, because manipulators constantly move among regions
of their workspaces so widely separated that no linearization valid for all regions can
be found.

Another approach is to move the operating point with the manipulator as it
moves, always linearizing about the desired position of the manipulator. The result
of this sort of moving linearization is a linear, but time-varying, system. Although this
quasi-static linearization of the original system is useful in some analysis and design
techniques, we will not make use of it in our control-law synthesis procedure. Rather,
we will deal with the nonlinear equations of motion directly, and will not resort to
linearizations in deriving a controller.

If the spring in Fig. 9.6 were not linear but instead contained a nonlinear ele-
ment, we could consider the system quasi-statically and, at each instant, figure out
where the poles of the system are located. We would find that the poles “move”
around in the real–imaginary plane as a function of the position of the block. Hence,
we could not select fixed gains that would keep the poles in a desirable location (for
example, at critical damping). So we may be tempted to consider a more complicated
control law, in which the gains are time-varying (actually, varying as a function of the
block’s position) in such a manner that the system is always critically damped. Essen-
tially, this would be done by computing kp such that the combination of the nonlinear
effect of the spring would be exactly cancelled by a nonlinear term in the control law
so that the overall stiffness would stay a constant at all times. Such a control scheme
might be called a linearizing control law, because it uses a nonlinear control term
to “cancel” a nonlinearity in the controlled system, so that the overall closed loop
system is linear.

We will now return to our partitioned control law and see that it can per-
form this linearizing function. In our partitioned control-law scheme, the servo law
remains the same as always, but the model-based portion now will contain a model of
the nonlinearity. Thus, the model-based portion of the control performs a lineariza-
tion function. This is best shown in the following example.

EXAMPLE 10.1

Consider the nonlinear spring characteristic shown in Fig. 10.1. Rather than the usual
linear spring relationship, f = kx, this spring is described by f = qx3. If this spring
is part of the physical system shown in Fig. 9.6, construct a control law to keep the
system critically damped with a stiffness of kCL.

The open-loop equation is

mẍ + bẋ + qx3 = f. (10.1)
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f

x

f  5 qx3

FIGURE 10.1: The force-vs.-distance characteristic of a nonlinear spring.

The model-based portion of the control is f = αf ′ + β, where now we use

α = m,

β = bẋ + qx3; (10.2)

the servo portion is, as always,

f ′ = ẍd + kvė + kpe, (10.3)

where the values of the gains are calculated from some desired performance spec-
ification. Figure 10.2 shows a block diagram of this control system. The resulting
closed-loop system maintains poles in fixed locations.
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f 5 mx 1 bx 1 qx3...

bx 1 qx3.

FIGURE 10.2: A nonlinear control system for a system with a nonlinear spring.
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FIGURE 10.3: The force-vs.-velocity characteristic of Coulomb friction.

EXAMPLE 10.2

Consider the nonlinear friction characteristic shown in Fig. 10.3. Whereas linear fric-
tion is described by f = bẋ, this Coulomb friction is described by f = bcsgn(ẋ). For
most of today’s manipulators, the friction of the joint in its bearing (be it rotational or
linear) is modeled more accurately by this nonlinear characteristic than by the sim-
pler, linear model. If this type of friction is present in the system of Fig. 9.6, design a
control system that uses a nonlinear model-based portion to damp the system criti-
cally at all times.

The open-loop equation is

mẍ + bcsgn(ẋ) + kx = f. (10.4)

The partitioned control law is f = αf ′ + β, where

α = m,

β = bcsgn(ẋ) + kx, (10.5)

f ′ = ẍd + kυ ė + kpe,

where the values of the gains are calculated from some desired performance
specification.

EXAMPLE 10.3

Consider the single-link manipulator shown in Fig. 10.4. It has one rotational joint.
The mass is considered to be located at a point at the distal end of the link, and so the
moment of inertia is ml2. There is Coulomb and viscous friction acting at the joint,
and there is a load due to gravity.
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m
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θ

FIGURE 10.4: An inverted pendulum or a one-link manipulator.

The model of the manipulator is

τ = ml2θ̈ + υθ̇ + csgn(θ̇) + mlgcos(θ). (10.6)

As always, the control system has two parts: the linearizing model-based portion,
and the servo law portion.

The model-based portion of the control is f = αf ′ + β, where

α = ml2,

β = υθ̇ + csgn(θ̇) + mlgcos(θ); (10.7)

the servo portion is, as always,

f ′ = θ̈d + kυ ė + kpe, (10.8)

where the values of the gains are calculated from some desired performance
specification.

We have seen that, in certain simple cases, it is not difficult to design a nonlinear
controller. The general method used in the foregoing simple examples is the same
method we will use for the problem of manipulator control:

1. Compute a nonlinear model-based control law that “cancels” the nonlinearities
of the system to be controlled.

2. Reduce the system to a linear system that can be controlled with the simple
linear servo law developed for the unit mass.

In some sense, the linearizing control law implements an inverse model of the
system being controlled. The nonlinearities in the system cancel those in the inverse
model; this, together with the servo law, results in a linear closed-loop system. Obvi-
ously, to do this cancelling, we must know the parameters and the structure of the
nonlinear system. This is often a problem in practical application of this method.
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10.3 MULTI-INPUT, MULTI-OUTPUT CONTROL SYSTEMS

Unlike the simple examples we have discussed in this chapter so far, the problem
of controlling a manipulator is a multi-input, multi-output (MIMO) problem. That
is, we have a vector of desired joint positions, velocities, and accelerations, and
the control law must compute a vector of joint-actuator signals. Our basic scheme,
partitioning the control law into a model-based portion and a servo portion, is
still applicable, but it now appears in a matrix–vector form. The control law takes
the form

F = αF ′ + β, (10.9)

where, for a system of n degrees of freedom, F , F ′, and β are n × 1 vectors, and α is an
n × n matrix. Note that the matrix α is not necessarily diagonal, but rather is chosen
to decouple the n equations of motion. If α and β are correctly chosen, then, from
the F ′ input, the system appears to be n independent unit masses. For this reason,
in the multidimensional case, the model-based portion of the control law is called a
linearizing and decoupling control law. The servo law for a multidimensional system
becomes

F ′ = Ẍd + KυĖ + KpE, (10.10)

where Kυ and Kp are now n × n matrices, which are generally chosen to be diago-
nal with constant gains on the diagonal. E and Ė are n × 1 vectors of the errors in
position and velocity, respectively.

10.4 THE CONTROL PROBLEM FOR MANIPULATORS

In the case of manipulator control, we developed a model and the corresponding
equations of motion in Chapter 6. As we saw, these equations are quite complicated.
The rigid-body dynamics have the form

τ = M(�)�̈ + V (�, �̇) + G(�), (10.11)

where M(�) is the n × n inertia matrix of the manipulator, V (�, �̇) is an n × 1 vector
of centrifugal and Coriolis terms, and G(�) is an n × 1 vector of gravity terms. Each
element of M(�) and G(�) is a complicated function that depends on �, the posi-
tion of all the joints of the manipulator. Each element of V (�, �̇) is a complicated
function of both � and �̇.

Additionally, we could incorporate a model of friction (or other non-rigid-body
effects). Assuming that our model of friction is a function of joint positions and veloc-
ities, we add the term F(�, �̇) to (10.11), to yield the model

τ = M(�)�̈ + V (�, �̇) + G(�) + F(�, �̇). (10.12)

The problem of controlling a complicated system like (10.12) can be handled
by the partitioned controller scheme we have introduced in this chapter. In this case,
we have

τ = ατ ′ + β, (10.13)

where τ is the n × 1 vector of joint torques. We choose

α = M(�),

β = V (�, �̇) + G(�) + F(�, �̇), (10.14)
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FIGURE 10.5: A model-based manipulator-control system.

with the servo law
τ ′ = �̈d + KυĖ + KpE, (10.15)

where
E = �d − �. (10.16)

The resulting control system is shown in Fig. 10.5.
Using (10.12) through (10.15), it is quite easy to show that the closed-loop sys-

tem is characterized by the error equation

Ë + KυĖ + KpE = 0. (10.17)

Note that this vector equation is decoupled: The matrices Kυ and Kp are diagonal,
so (10.17) could just as well be written on a joint-by-joint basis as

ëi + kυi ė + kpie = 0. (10.18)

The ideal performance represented by (10.17) is unattainable in practice, for many
reasons, the most important two being:

1. The discrete nature of a digital-computer implementation, as opposed to the
ideal continuous-time control law implied by (10.14) and (10.15).

2. Inaccuracy in the manipulator model (needed to compute (10.14)).

In the next section, we will (at least partially) address these two issues.

10.5 PRACTICAL CONSIDERATIONS

In developing the decoupling and linearizing control in the last few sections, we have
implicitly made a few assumptions that rarely are true in practice.

Time Required to Compute the Model

In all our considerations of the partitioned-control-law strategy, we have implicitly
assumed that the entire system was running in continuous time, and that the compu-
tations in the control law require zero time for their computation. Given any amount
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of computation, with a large enough computer we can do the computations suffi-
ciently fast that this is a reasonable approximation; however, the expense of the com-
puter could make the scheme economically unfeasible. In the manipulator-control
case, the entire dynamic equation of the manipulator, (10.14), must be computed
in the control law. These computations are quite involved; consequently, as was dis-
cussed in Chapter 6, there has been a great deal of interest in developing fast compu-
tational schemes to compute them in an efficient way. As computer power becomes
more and more affordable, control laws that require a great deal of computation will
become more practical. Several experimental implementations of nonlinear-model-
based control laws have been reported [5–9], and partial implementations are begin-
ning to appear in industrial controllers.

As was discussed in Chapter 9, almost all manipulator-control systems are now
performed in digital circuitry and are run at a certain sampling rate. This means that
the position (and possibly other) sensors are read at discrete points in time. From the
values read, an actuator command is computed and sent to the actuator. Thus, read-
ing sensors and sending actuator commands are not done continuously, but rather at
a finite sampling rate. To analyze the effect of delay due to computation and finite
sample rate, we must use tools from the field of discrete-time control. In discrete time,
differential equations turn into difference equations, and a complete set of tools has
been developed to answer questions about stability and pole placement for these
systems. Discrete-time control theory is beyond the scope of this book, although, for
researchers working in the area of manipulator control, many of the concepts from
discrete-time systems are essential (see [10]).

Although important, ideas and methods from discrete-time control theory are
often difficult to apply to the case of nonlinear systems. Whereas we have managed
to write a complicated differential equation of motion for the manipulator dynamic
equation, a discrete-time equivalent is impossible to obtain in general because, for
a general manipulator, the only way to solve for the motion of the manipulator for
a given set of initial conditions, an input, and a finite interval is by numerical inte-
gration (as we saw in Chapter 6). Discrete-time models are possible if we are willing
to use series solutions to the differential equations, or if we make approximations.
However, if we need to make approximations to develop a discrete model, then it is
not clear whether we have a better model than that which we have when just using
the continuous model and making the continuous-time approximation. Suffice it to
say that analysis of the discrete-time manipulator-control problem is difficult, and
usually simulation is resorted to in order to judge the effect that a certain sample
rate will have on performance.

We will generally assume that the computations can be performed quickly
enough and often enough that the continuous-time approximation is valid.

Feedforward Nonlinear Control

The use of feedforward control has been proposed as a method of using a nonlinear
dynamic model in a control law without the need for complex and time-consuming
computations to be performed at servo rates [11]. In Fig. 10.5, the model-based con-
trol portion of the control law is “in the servo loop” in that signals “flow” through
that black box with each tick of the servo clock. If we wish to select a sample rate of
200 Hz, then the dynamic model of the manipulator must be computed at this rate.
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FIGURE 10.6: Control scheme with the model-based portion “outside” the servo loop.

Another possible control system is shown in Fig. 10.6. Here, the model-based con-
trol is “outside” the servo loop. Hence, it is possible to have a fast inner servo loop,
consisting simply of multiplying errors by gains, with the model-based torques added
at a slower rate.

Unfortunately, the feedforward scheme of Fig. 10.6 does not provide complete
decoupling. If we write the system equations,1 we will find that the error equation of
this system is

Ë + M−1(�)KυĖ + M−1(�)KpE = 0. (10.19)

Clearly, as the configuration of the arm changes, the effective closed-loop gain
changes, and the quasi-static poles move around in the real–imaginary plane.
However, equation (10.19) could be used as a starting point for designing a robust
controller—one that finds a good set of constant gains such that, despite the
“motion” of the poles, they are guaranteed to remain in reasonably favorable
locations. Alternatively, one might consider schemes in which variable gains are
precomputed which change with configuration of the robot, so that the system’s
quasi-static poles remain in fixed positions.

Note that, in the system of Fig. 10.6, the dynamic model is computed as a func-
tion of the desired path only, so when the desired path is known in advance, values
could be computed “off-line” before motion begins. At run time, the precomputed
torque histories would then be read out of memory. Likewise, if time-varying gains
are computed, they could be computed beforehand and stored as well. Hence, such
a scheme could be quite inexpensive computationally at run time, and thus achieve
a high servo rate.

Dual-Rate Computed-Torque Implementation

Figure 10.7 shows the block diagram of a possible practical implementation of the
decoupling and linearizing position-control system. The dynamic model is expressed
in its configuration space form so that the dynamic parameters of the manipulator
will appear as functions of manipulator position only. These functions might then
be computed by a background process, or by a second control computer [8], or be

1We have used the simplifying assumptions M(�d) ∼= M(�), V (�d, �̇d ) ∼= (V (�, �̇), G(�d) ∼= G(�),
and F(�d, �̇d ) ∼= F(�, �̇).
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FIGURE 10.7: An implementation of the model-based manipulator-control system.

looked up in a precomputed table [12]. In this architecture, the dynamic parameters
can be updated at a rate slower than the rate of the closed-loop servo. For example,
the background computation might proceed at 60 Hz while the closed-loop servo
was running at 250 Hz.

Lack of Knowledge of Parameters

The second potential difficulty encountered in employing the computed-torque
control algorithm is that the manipulator dynamic model is often not known
accurately. This is particularly true of certain components of the dynamics, such
as friction effects. In fact, it is usually extremely difficult to know the structure of
the friction model, let alone the parameter values [13]. Finally, if the manipulator
has some portion of its dynamics that is not repeatable—because, for example, it
changes as the robot ages—it is difficult to have good parameter values in the model
at all times.

By nature, most robots will be picking up various parts and tools. When a robot
is holding a tool, the inertia and the weight of the tool change the dynamics of the
manipulator. In an industrial situation, the mass properties of the tools might be
known—in this case, they can be accounted for in the modeled portion of the control
law. When a tool is grasped, the inertia matrix, total mass, and center of mass of
the last link of the manipulator can be updated to new values that represent the
combined effect of the last link plus the tool. However, in many applications, the
mass properties of objects that the manipulator picks up are not generally known, so
maintenance of an accurate dynamic model is difficult.

The simplest possible nonideal situation is one in which we still assume a per-
fect model implemented in continuous time, but with external noise acting to disturb
the system. In Fig. 10.8, we indicate a vector of disturbance torques acting at the
joints. Writing the system error equation with inclusion of these unknown distur-
bances, we arrive at

Ë + KυĖ + KpE = M−1(�)τd, (10.20)
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where τd is the vector of disturbance torques at the joints. The left-hand side of
(10.20) is uncoupled, but, from the right-hand side, we see that a disturbance on
any particular joint will introduce errors at all the other joints, because M (�) is not,
in general, diagonal.

Some simple analyses might be performed on the basis of (10.20). For example,
it is easy to compute the steady-state servo error due to a constant disturbance as

E = K−1
p M−1(�)τd . (10.21)

This is a multi-dimensional analog of equation (9.56)
When our model of the manipulator dynamics is not perfect, analysis of the

resulting closed-loop system becomes more difficult. We define the following nota-
tion: M̂(�) is our model of the manipulator inertia matrix, M(�). Likewise, V̂ (�, �̇),

Ĝ(�), and F̂ (�, �̇) are our models of the velocity terms, gravity terms, and fric-
tion terms of the actual mechanism respectively. Perfect knowledge of the model
would mean that

M̂(�) = M(�),

V̂ (�, �̇) = V (�, �̇), (10.22)

Ĝ(�) = G(�),

F̂ (�, �̇) = F(�, �̇).

Therefore, although the manipulator dynamics are given by

τ = M(�)�̈ + V (�, �̇) + G(�) + F(�, �̇), (10.23)

our control law computes

τ = ατ ′ + β,

α = M̂(�), (10.24)

β = V̂ (�, �̇) + Ĝ(�) + F̂ (�, �̇).
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Decoupling and linearizing will not, therefore, be perfectly accomplished when
parameters are not known exactly. Writing the closed-loop equation for the system,
we have

Ë + KυĖ + KpE

= M̂−1[(M − M̂)�̈ + (V − V̂ ) + (G − Ĝ) + (F − F̂ )], (10.25)

where the arguments of the dynamic functions are not shown for brevity. Note that,
if the model were exact, so that (10.22) were true, then the right-hand side of (10.25)
would be zero and the errors would disappear. When the parameters are not known
exactly, the mismatch between actual and modeled parameters will cause servo
errors to be excited (possibly even resulting in an unstable system [21]) according
to the rather complicated equation (10.25).

Discussion of stability analysis of a nonlinear closed-loop system will be
deferred until Section 10.7.

10.6 CURRENT INDUSTRIAL-ROBOT CONTROL SYSTEMS

Because of the problems with having good knowledge of parameters, it is not clear
whether it makes sense to go to the trouble of computing a complicated model-based
control law for manipulator control. The expense of the computer power needed
to compute the model of the manipulator at a sufficient rate might not be worth-
while, especially when lack of knowledge of parameters could nullify the benefits
of such an approach. Manufacturers of industrial robots have decided, probably for
economic reasons, that attempting to use a complete manipulator model in the con-
troller is not worthwhile. Instead, present-day manipulators are controlled with very
simple control laws that generally are completely error driven and are implemented
in architectures such as those studied in Section 9.10. An industrial robot with a high-
performance servo system is shown in Fig. 10.9.

Individual-Joint PID Control

Most industrial robots nowadays have a control scheme that, in our notation, would
be described by

α = I,

β = 0, (10.26)

where I is the n × n identity matrix. The servo portion is

τ ′ = �̈d + KυĖ + KpE + Ki

∫
Edt, (10.27)

where Kυ , Kp, and Ki are constant diagonal matrices. In many cases, �̈d is not avail-
able, and this term is simply set to zero. That is, most simple robot controllers do
not use a model-based component at all in their control law. This type of PID con-
trol scheme is simple because each joint is controlled as a separate control system.
Often, one microprocessor per joint is used to implement (10.27), as was discussed
in Section 9.10.
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FIGURE 10.9: The Adept One, a direct-drive robot by Adept Technology, Inc.

The performance of a manipulator controlled in this way is not simple to
describe. No decoupling is being done, so the motion of each joint affects the other
joints. These interactions cause errors, which are suppressed by the error-driven
control law. It is impossible to select fixed gains that will critically damp the response
to disturbances for all configurations. Therefore, “average” gains are chosen, which
approximate critical damping in the center of the robot’s workspace. In various
extreme configurations of the arm, the system becomes either underdamped or
overdamped. Depending on the details of the mechanical design of the robot, these
effects could be fairly small; control would then be good. In such systems, it is
important to keep the gains as high as possible, so the inevitable disturbances will
be suppressed quickly.

Addition of Gravity Compensation

The gravity terms will tend to cause static positioning errors, so some robot manu-
facturers include a gravity model, G(θ), in the control law (that is, β = Ĝ(�) in our
notation). The complete control law takes the form

τ ′ = �̈d + KυĖ + KpE + Ki

∫
Edt + Ĝ(�). (10.28)
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Such a control law is perhaps the simplest example of a model-based controller.
Because (10.28) can no longer be implemented on a strict joint-by-joint basis, the
controller architecture must allow communication between the joint controllers, or
must make use of a central processor rather than individual-joint processors.

Various Approximations of Decoupling Control

There are various ways to simplify the dynamic equations of a particular manipulator
[3,14]. After the simplification, an approximate decoupling and linearizing law can
be derived. A usual simplification might be to disregard components of torque due
to the velocity terms—that is, to model only the inertial and gravity terms. Often,
friction models are not included in the controller, because friction is so hard to model
correctly. Sometimes, the inertia matrix is simplified so that it accounts for the major
coupling between axes, but not for minor cross-coupling effects. For example, [14]
presents a simplified version of the PUMA 560’s mass matrix that requires only about
10% of the calculations needed to compute the complete mass matrix, yet is accurate
to within 1%.

10.7 LYAPUNOV STABILITY ANALYSIS

In Chapter 9, we examined linear control systems analytically to evaluate stability
and also performance of the dynamic response in terms of damping and closed-loop
bandwidth. The same analyses are valid for a nonlinear system that has been decou-
pled and linearized by means of a perfect model-based nonlinear controller, because
the overall resulting system is again linear. However, when decoupling and lineariz-
ing are not performed by the controller, or are incomplete or inaccurate, the overall
closed-loop system remains nonlinear. For nonlinear systems, stability and perfor-
mance analysis is much more difficult. In this section, we introduce one method of
stability analysis that is applicable to both linear and nonlinear systems.

Consider the simple mass–spring friction system originally introduced in
Chapter 9, whose equation of motion is

mẍ + bẋ + kx = 0. (10.29)

The total energy of the system is given by

υ = 1
2
mẋ2 + 1

2
kx2, (10.30)

where the first term gives the kinetic energy of the mass and the second term gives
the potential energy stored in the spring. Note that the value, υ, of the system energy
is always nonnegative (i.e., it is positive or zero). Let’s find out the rate of change of
the total energy by differentiating (10.30) with respect to time, to obtain

υ̇ = mẋẍ + kxẋ. (10.31)

Substituting (10.29) for mẍ in (10.31) yields

υ̇ = −bẋ2, (10.32)

which we note is always nonpositive (because b > 0). Thus, energy is always leaving
the system, unless ẋ = 0. This implies that, however initially perturbed, the system
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will lose energy until it comes to rest. Investigating possible resting positions by
means of a steady-state analysis of (10.29) yields

kx = 0, (10.33)

or
x = 0. (10.34)

Hence, by means of an energy analysis, we have shown that the system of (10.29)
with any initial conditions (i.e., any initial energy) will eventually come to rest
at the equilibrium point. This stability proof by means of an energy analysis is a
simple example of a more general technique called Lyapunov stability analysis or
Lyapunov’s second (or direct) method, after a Russian mathematician of the 19th
century [15].

An interesting feature of this method of stability analysis is that we can con-
clude stability without solving for the solution of the differential equation governing
the system. However, while Lyapunov’s method is useful for examining stability,
it generally does not provide any information about the transient response or per-
formance of the system. Note that our energy analysis yielded no information on
whether the system was overdamped or underdamped, or on how long it would take
the system to suppress a disturbance. It is important to distinguish between stability
and performance: A stable system might nonetheless exhibit control performance
unsatisfactory for its intended use.

Lyapunov’s method is somewhat more general than our example indicated. It is
one of the few techniques that can be applied directly to nonlinear systems to inves-
tigate their stability. As a means of quickly getting an idea of Lyapunov’s method
(in sufficient detail for our needs), we will look at an extremely brief introduction to
the theory, then proceed directly to several examples. A more complete treatment
of Lyapunov theory can be found in [16, 17].

Lyapunov’s method is concerned with determining the stability of a differential
equation

Ẋ = f (X), (10.35)

where X is m × 1 and f (·) could be nonlinear. Note that higher order differential
equations can always be written as a set of first-order equations in the form (10.35).
To prove a system stable by Lyapunov’s method, one is required to propose a gener-
alized energy function υ(X) that has the following properties:

1. υ(X) has continuous first partial derivatives, and υ(X) > 0 for all X except
υ(0) = 0.

2. υ̇(X) ≤ 0. Here, υ̇(X) means the change in υ(X) along all system trajectories.

These properties might hold only in a certain region, or they might be global,
with correspondingly weaker or stronger stability results. The intuitive idea is that a
positive definite “energy-like” function of state is shown to always decrease or remain
constant—hence, the system is stable, in the sense that the size of the state vector is
bounded.

When υ̇(X) is strictly less than zero, asymptotic convergence of the state to the
zero vector can be concluded. Lyapunov’s original work was extended in an impor-
tant way by LaSalle and Lefschetz [4], who showed that, in certain situations, even
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when υ̇(X) ≤ 0 (note equality included), asymptotic stability can be shown. For our
purposes, we can deal with the case υ̇(X) = 0 by performing a steady-state analysis
in order to learn whether the stability is asymptotic or the system under study can
“get stuck” somewhere other than υ(X) = 0.

A system described by (10.35) is said to be autonomous because the function
f (·) is not an explicit function of time. Lyapunov’s method also extends to nonau-
tonomous systems, in which time is an argument of the nonlinear function. See [4, 17]
for details.

EXAMPLE 10.4

Consider the linear system
Ẋ = −AX, (10.36)

where A is m × m and positive definite. Propose the candidate Lyapunov function

υ(X) = 1
2
XT X, (10.37)

which is continuous and everywhere nonnegative. Differentiating yields

υ̇(X) = XT Ẋ

= XT (−AX) (10.38)

= −XT AX,

which is everywhere nonpositive because A is a positive definite matrix. Hence,
(10.37) is indeed a Lyapunov function for the system of (10.36). The system is
asymptotically stable because υ̇(X) can be zero only at X = 0; everywhere else, X

must decrease.

EXAMPLE 10.5

Consider a mechanical spring–damper system in which both the spring and damper
are nonlinear:

ẍ + b(ẋ) + k(x) = 0. (10.39)

The functions b(·) and k(·) are first- and third-quadrant continuous functions
such that

ẋb(ẋ) > 0 f or x �= 0,

xk(x) > 0 f or x �= 0. (10.40)

Once having proposed the Lyapunov function

υ(x, ẋ) = 1
2
ẋ2 +

∫ x

0
k(λ)dλ, (10.41)
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we are led to

υ̇(x, ẋ) = ẋẍ + k(x)ẋ,

= −ẋb(ẋ) − k(x)ẋ + k(x)ẋ, (10.42)

= −ẋb(ẋ).

Hence, υ̇(·) is nonpositive but is only semidefinite, because it is not a function of x

but only of ẋ. In order to conclude asymptotic stability, we have to ensure that it is
not possible for the system to “get stuck” with nonzero x. To study all trajectories
for which ẋ = 0, we must consider

ẍ = −k(x), (10.43)

for which x = 0 is the only solution. Hence, the system will come to rest only if
x = ẋ = ẍ = 0.

EXAMPLE 10.6

Consider a manipulator with dynamics given by

τ = M(�)�̈ + V (�, �̇) + G(�) (10.44)

and controlled with the control law

τ = KpE − Kd�̇ + G(�), (10.45)

where Kp and Kd are diagonal gain matrices. Note that this controller does not force
the manipulator to follow a trajectory, but moves the manipulator to a goal point
along a path specified by the manipulator dynamics then regulates the position there.
The resulting closed-loop system obtained by equating (10.44) and (10.45) is

M(�)�̈ + V (�, �̇) + Kd�̇ + Kp� = Kp�d; (10.46)

it can be proven to be globally asymptotically stable by Lyapunov’s method [18, 19].
Consider the candidate Lyapunov function

υ = 1
2
�̇T M(�)�̇ + 1

2
ET KpE. (10.47)

The function (10.47) is always positive or zero, because the manipulator mass matrix,
M(�), and the position gain matrix, Kp, are positive definite matrices. Differentiating
(10.47) yields

υ̇ = 1
2
�̇T Ṁ(�)�̇ + �̇T M(�)�̈ − ET Kp�̇

= 1
2
�̇T Ṁ(�)�̇ − �̇T Kd�̇ − �̇T V (�, �̇) (10.48)

= −�̇T Kd�̇,
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which is nonpositive as long as Kd is positive definite. In taking the last step in (10.48),
we have made use of the interesting identity

1
2
�̇T Ṁ(�)�̇ = �̇T V (�, �̇), (10.49)

which can be shown by investigation of the structure of Lagrange’s equations of
motion [18–20] (see also Exercise 6.17).

Next, we investigate whether the system can get “stuck” with nonzero error.
Because υ̇ can remain zero only along trajectories that have �̇ = 0 and �̈ = 0, we
see from (10.46) that, in this case,

KpE = 0, (10.50)

and because Kp is nonsingular, we have

E = 0. (10.51)

Hence, control law (10.45) applied to the system (10.44) achieves global asymptotic
stability.

This proof is important in that it explains, to some extent, why today’s industrial
robots work. Most industrial robots use a simple error-driven servo, occasionally with
gravity models, and so are quite similar to (10.45).

See Exercises 10.11 through 10.16 for more examples of nonlinear manipulator-
control laws that can be proven stable by Lyapunov’s method. Recently, Lyapunov
theory has become increasingly prevalent in robotics research publications [18–25].

10.8 CARTESIAN-BASED CONTROL SYSTEMS

In this section, we introduce the notion of Cartesian-based control. Although such
approaches are not currently used in industrial robots, there is activity at several
research institutions on such schemes.

Comparison with Joint-Based Schemes

In all the control schemes for manipulators we have discussed so far, we assumed that
the desired trajectory was available in terms of time histories of joint position, veloc-
ity, and acceleration. Given that these desired inputs were available, we designed
joint-based control schemes—that is, schemes in which we develop trajectory errors
by finding the difference between desired and actual quantities expressed in joint
space. Very often, we wish the manipulator end-effector to follow straight lines or
other path shapes described in Cartesian coordinates. As we saw in Chapter 7, it is
possible to compute the time histories of the joint-space trajectory that correspond
to Cartesian straight-line paths. Figure 10.10 shows this approach to manipulator-
trajectory control. A basic feature of the approach is the trajectory-conversion pro-
cess, which is used to compute the joint trajectories. This is then followed by some
kind of joint-based servo scheme such as that we have been studying.
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Trajectory
Conversion

GainsXd

Xd

Xd

θd
δθ θ

1 2
θd

θd

Arm
τ

S

FIGURE 10.10: A joint-based control scheme with Cartesian-path input.

The trajectory-conversion process is quite difficult (in terms of computational
expense) if it is to be done analytically. The computations that would be required are

�d = INV KIN(χd),

�̇d = J−1(�)χ̇d, (10.52)

�̈d = J̇−1(�)χ̇d + J−1(�)χ̈d .

To the extent that such a computation is done at all in present-day systems, usu-
ally just the solution for �d is performed, by using the inverse kinematics, then the
joint velocities and accelerations are computed numerically by first and second differ-
ences. However, such numerical differentiation tends to amplify noise and introduces
a lag unless it can be done with a noncausal filter.2 Therefore, we are interested in
either finding a less computationally expensive way of computing (10.52) or suggest-
ing a control scheme in which this information is not needed.

An alternative approach is shown in Fig. 10.11. Here, the sensed position of the
manipulator is immediately transformed by means of the kinematic equations into
a Cartesian description of position. This Cartesian description is then compared to
the desired Cartesian position in order to form errors in Cartesian space. Control
schemes based on forming errors in Cartesian space are called Cartesian-based con-
trol schemes. For simplicity, velocity feedback is not shown in Fig. 10.11, but it would
be present in any implementation.

The trajectory-conversion process is replaced by some kind of coordinate con-
version inside the servo loop. Note that Cartesian-based controllers must perform
many computations in the loop; the kinematics and other transformations are now

Coordinate
conversion

and
gains

Xd
δX

X

θ
S

1 2
Arm

τ

Kin (θ)

FIGURE 10.11: The concept of a Cartesian-based control scheme.
2Numerical differentiation introduces a lag unless it can be based on past, present, and future values.

When the entire path is preplanned, this kind of noncausal numerical differentiation can be done.
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“inside the loop.” This can be a drawback of the Cartesian-based methods; the result-
ing system could run at a lower sampling frequency compared to joint-based systems
(given the same size of computer). This would, in general, degrade the stability and
disturbance-rejection capabilities of the system.

Intuitive Schemes of Cartesian Control

One possible control scheme that comes to mind rather intuitively is shown in
Fig. 10.12. Here, Cartesian position is compared to the desired position to form
an error, δX, in Cartesian space. This error, which may be presumed small if the
control system is doing its job, may be mapped into a small displacement in joint
space by means of the inverse Jacobian. The resulting errors in joint space, δθ , are
then multiplied by gains to compute torques that will tend to reduce these errors.
Note that Fig. 10.12 shows a simplified controller in which, for clarity, the velocity
feedback has not been shown. It could be added in a straightforward manner. We
will call this scheme the inverse-Jacobian controller.

Another scheme which could come to mind is shown in Fig. 10.13. Here, the
Cartesian error vector is multiplied by a gain to compute a Cartesian force vector.
This can be thought of as a Cartesian force which, if applied to the end-effector of
the robot, would push the end-effector in a direction that would tend to reduce the
Cartesian error. This Cartesian force vector (actually a force–moment vector) is then
mapped through the Jacobian transpose in order to compute the equivalent joint
torques that would tend to reduce the observed errors. We will call this scheme the
transpose-Jacobian controller.

The inverse-Jacobian controller and the transpose-Jacobian controller have
both been arrived at intuitively. We cannot be sure that such arrangements would
be stable, let alone perform well. It is also curious that the schemes are extremely

Xd
δX

X

θ
S

1 2

Arm
τ

Gains
δθ

J21

Kin (θ)

FIGURE 10.12: The inverse-Jacobian Cartesian-control scheme.

Xd
δX

X

θ

1 2

Arm
τF

Gains JT

Kin (θ)

S

FIGURE 10.13: The transpose-Jacobian Cartesian-control scheme.
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similar, except that the one contains the Jacobian’s inverse, and the other its
transpose. Remember, the inverse is not equal to the transpose in general (only in
the case of a strictly Cartesian manipulator does J T = J−1). The exact dynamic
performance of such systems (if expressed in a second-order error-space equation,
for example) is very complicated. It turns out that both schemes will work (i.e.,
can be made stable), but not well (i.e., performance is not good over the entire
workspace). Both can be made stable by appropriate gain selection, including some
form of velocity feedback (which was not shown in Figs. 10.12 and 10.13). While
both will work, neither is correct, in the sense that we cannot choose fixed gains that
will result in fixed closed-loop poles. The dynamic response of such controllers will
vary with arm configuration.

Cartesian Decoupling Scheme

For Cartesian-based controllers, like joint-based controllers, good performance
would be characterized by constant error dynamics over all configurations of the
manipulator. Errors are expressed in Cartesian space in Cartesian-based schemes,
so this means that we would like to design a system which, over all possible
configurations, would suppress Cartesian errors in a critically damped fashion.

Just as we achieved good control with a joint-based controller that was based on
a linearizing and decoupling model of the arm, we can do the same for the Cartesian
case. However, we must now write the dynamic equations of motion of the manipu-
lator in terms of Cartesian variables. This can be done, as was discussed in Chapter 6.
The resulting form of the equations of motion is quite analogous to the joint-space
version. The rigid-body dynamics can be written as

F = Mx(�)χ̈ + Vx(�, �̇) + Gx(�), (10.53)

where F is a fictitious force–moment vector acting on the end-effector of the robot,
and χ is an appropriate Cartesian vector representing position and orientation of the
end-effector [8]. Analogous to the joint-space quantities, Mx(�) is the mass matrix in
Cartesian space, Vx(�, �̇) is a vector of velocity terms in Cartesian space, and Gx(�)

is a vector of gravity terms in Cartesian space.
Just as we did in the joint-based case, we can use the dynamic equations in a

decoupling and linearizing controller. Because (10.53) computesF, a fictitious Carte-
sian force vector which should be applied to the hand, we will also need to use the
transpose of the Jacobian in order to implement the control—that is, after F is cal-
culated by (10.53), we cannot actually cause a Cartesian force to be applied to the
end-effector; we instead compute the joint torques needed to effectively balance the
system if we were to apply this force:

τ = J T (�)F. (10.54)

Figure 10.14 shows a Cartesian arm-control system using complete dynamic
decoupling. Note that the arm is preceded by the Jacobian transpose. Notice that
the controller of Fig. 10.14 allows Cartesian paths to be described directly, with no
need for trajectory conversion.

As in the joint-space case, a practical implementation might best be achieved
through use of a dual-rate control system. Figure 10.15 shows a block diagram of a
Cartesian-based decoupling and linearizing controller in which the dynamic parame-
ters are written as functions of manipulator position only. These dynamic parameters
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FIGURE 10.14: The Cartesian model-based control scheme.
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E
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FIGURE 10.15: An implementation of the Cartesian model-based control scheme.

are updated at a rate slower than the servo rate by a background process or a second
control computer. This is appropriate, because we desire a fast servo (perhaps run-
ning at 500 Hz or even higher) to maximize disturbance rejection and stability. The
dynamic parameters are functions of manipulator position only, so they need be
updated at a rate related only to how fast the manipulator is changing configuration.
The parameter-update rate probably need not be higher than 100 Hz [8].
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FIGURE 10.16: The concept of an adaptive manipulator controller.

10.9 ADAPTIVE CONTROL

In the discussion of model-based control, it was noted that, often, parameters of
the manipulator are not known exactly. When the parameters in the model do not
match the parameters of the real device, servo errors will result, as is made explicit
in (10.25). These servo errors could be used to drive some adaptation scheme that
attempts to update the values of the model parameters until the errors disappear.
Several such adaptive schemes have been proposed.

An ideal adaptive scheme might be like the one in Fig. 10.16. Here, we are
using a model-based control law as developed in this chapter. There is an adapta-
tion process that, given observations of manipulator state and servo errors, readjusts
the parameters in the nonlinear model until the errors disappear. Such a system
would learn its own dynamic properties. A method that possesses exactly the struc-
ture shown in Fig. 10.16 and has been proven globally stable is presented in [20, 21],
and is summarized in this section. A related technique is that of [22].

In this section, we present an adaptive scheme of manipulator control that takes
full advantage of any known parameters while estimating the remaining unknown
parameters. The overall adaptive control system maintains the structure of the com-
puted torque servo, but in addition has an adaptive element. After sufficient on-line
learning, the control algorithm decouples and linearizes the manipulator so that each
joint behaves as an independent second-order system with fixed dynamics.

The manipulator is modeled as a set of n rigid bodies connected in a serial chain
with friction acting at the joints. The vector equation of motion of such a device can
be written as we saw in (10.12), or in the compact form given by

T = M(�)�̈ + Q(�, �̇). (10.55)
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The j th element of (10.55) can be written in a sum-of-products form, as

τj =
aj∑
i=1

mjifji(�, �̈) +
bj∑
i=1

qjigji(�, �̇), (10.56)

where the mji and qji are parameters formed by products of such quantitites as
link masses, link inertia tensor elements, lengths, friction coefficients, and the
gravitational acceleration constant. The fji(�, �̈) and the gji(�, �̇) are functions
that embody the dynamic structure of the manipulator’s geometry. In this section,
we assume that the structure of these parameters and functions is known, but the
numerical values of some or all of the parameters mji and qji are unknown. We
will, however, assume that bounds on the parameter values are known, although
these bounds may sometimes be quite loose.3 This is equivalent to the situation of
knowing the kinematic structure of a manipulator, and having parametric models
of joint friction effects, but knowing only some, or perhaps none, of the dynamic
parameters such as mass distribution of the links and friction coefficients.

To control the manipulator, we propose the control law

T = M̂(�)�̈∗ + Q̂(�, �̇), (10.57)

where M̂(�) and Q̂(�, �̇) are estimates of M(�) and Q(�, �̇) and

�̈∗ = �̈d + KυĖ + KpE. (10.58)

In (10.58), the servo error E = [e1e2 . . . en]T is defined as

E = �d − �, (10.59)

and Kυ and Kp are n × n constant, diagonal-gain matrices with kυj and kpj on the
diagonals. As introduced in this chapter, (10.57) is sometimes referred to as the
computed torque method of manipulator control. The desired trajectory of the manip-
ulator is assumed known as time functions of joint positions, velocities, and acceler-
ations, �d(t), �̇d(t), and �̈d(t).

The j th element of (10.57) can be written in the sum-of-products form

τj =
nj∑
i=1

m̂jifji(�, �̈∗) +
bj∑
i=1

q̂j igji(�, �̇), (10.60)

where the m̂ji and q̂j i are estimates of the parameters appearing in (10.56).
The control law (10.57) is chosen because in the favorable situation of perfect

knowledge of parameter values and no disturbances, the j th joint has closed-loop
dynamics given by the error equation

ëj + kυjėj + kpj ej = 0. (10.61)

Hence, in this ideal situation, the kυj and kpj may be chosen to place the closed-loop
poles associated with each joint, and disturbance rejection will be uniform over the
entire workspace of the manipulator.

3In fact, such bounds are needed only for the parameters that appear in the manipulator’s mass matrix.
However, for generality, we will assume that bounds on all parameters are known.
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Figure 10.16 is a block diagram indicating the structure of the controller that
makes use of a dynamic model of the manipulator. An adaptive element is also indi-
cated. This adaptive element observes servo errors and adjusts the parameters that
appear in the control law (10.57). The remainder of this chapter is concerned with
the design of this adaptive element, proof of global stability of the design, and other
related issues.

We consider what we will call the “ideal case,” in which we have a perfect struc-
tural model of the manipulator dynamics. In this case, parameter errors are the sole
source of nonperfect decoupling and linearization of the system. That is, there exists
a tuning (or setting) of the parameters that would cause the model in the computer to
match the dynamics of the actual mechanical manipulator exactly. Obviously, some
(at least small) amount of disturbance will always be present, and we need to ensure
that the overall adaptive system is robust to its presence.

When estimates of parameters do not match the true parameter values, the
closed-loop system will not perform as indicated by (10.61). By equating (10.55) and
(10.57) we obtain

Ë + KυĖ + KpE = M̂−1(�)
[
M̃(�)�̈ + Q̃(�, �̇)

]
, (10.62)

where M̃(�) = M(�) − M̂(�) and Q̃(�, �̇) = Q(�, �̇) − Q̂(�, �̇) represent errors
in the dynamic model used in the controller arising from errors in the parameters of
the model.

In a given application, we may know some of the parameters mji and qji . Of the
aj parameters mji and bj parameters qji appearing in the dynamic equation (10.56)
of the j th joint, let rj and sj , respectively, of them be unknown, with rj ≤ aj and
sj ≤ bj for the j . Re-index the unknown parameters (if necessary) and note that the
j th component of the expression in the brackets in (10.62) can be written

τ̃j =
rj∑

i=1

m̃jifji(�, �̈) +
sj∑

i=1

q̃j igji(�, �̇), (10.63)

where

m̃ji = mji − m̂ji ,

and (10.64)

q̃j i = qji − q̂j i

are parameter errors.
The error equation (10.62) relates errors in the parameter estimates to servo

errors. The discussion preceding (10.63) tells how to partition the dynamics arbitrar-
ily into known and unknown portions. This partitioning will allow us to construct an
adaptive scheme that makes full use of known parameters, and adjusts only the esti-
mates of the unknown parameters. For example, we may know the inertial properties
of the manipulator, but not the friction coefficients, or we may know the parameters
of some links but not others, etc.

We will write the error equation (10.62) in the form

Ë + KυĖ + KpE = M̂−1(�)W(�, �̇, �̈)�, (10.65)
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where � is an r × 1 vector containing the parameter errors for all the parameters
in the system, and W(�, �̇, �̈) is an n × r matrix of functions. For brevity, the argu-
ments of M̂−1 and W will be dropped in the sequel. The number of system parame-
ters is

r ≤
n∑

j=1

(rj + sj ). (10.66)

These r system parameters, which are the mji and the qji either alone or in
combination, will now be called P = [p1 p2 . . . pr ]T and their estimates are P̂ =
[p̂1p̂2 . . . p̂r ]T , so that

� = P − P̂ . (10.67)

For uniformity, W and P can be defined so that each element of P is positive.
For the j th joint, an error equation may be written as

ëj + kυjėj + kpj ej = (M̂−1W�)j , (10.68)

where (·)j means the j th element of the n × 1 vector, M̂−1W�. Thus, in general,
a parameter error for any parameter in the system will give rise to errors on the
j th joint.

In the following analysis, it will be important that the product M̂−1W remain
bounded at all times. Since W is composed of bounded functions of manipulator tra-
jectory, W will remain bounded if the trajectory of the manipulator remains bounded.
The matrix M̂(�) will remain positive definite and invertible if we ensure that all
parameters mji remain within a sufficiently small range near the actual parameter
value. With this as motivation, we will restrict our estimates of the parameters to lie
within bounds, such that

li − δ < p̂i < hi + δ, (10.69)

where we know that the actual value pi lies between li and hi , and where δ is positive
and chosen such that M̂−1 remains bounded as long as (10.69) holds.

The adaptive law will compute how to change parameter estimates as a function
of a filtered servo error signal. The filtered servo error for the j th joint is

e1j (s) = (s + ψj )ej (s), (10.70)

where the ψj are positive constants. Hence,

E1 = Ė + E, (10.71)

where  = diag(ψ1 ψ2 . . . ψn). Note that for manipulators instrumented with posi-
tion and velocity sensors, the value E1 can be computed simply from sensor readings
and the filter need not be implemented as such.

The ψj are chosen such that the transfer function

s + ψj

s2 + kυj s + kpj

(10.72)
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is strictly positive real (SPR).4 Then, by the positive real lemma [26] we are assured
of the existence of the positive definite matrices Pj and Qj such that

AT
j Pj + PjAj = −Qj

PjBj = CT
j ,

(10.73)

where the matrices Aj , Bj , and Cj are the matrices of a minimal state–space real-
ization of the filtered error equation of the j th joint

ẋj = Ajxj + Bj (M̂
−1W�)j

e1j = Cjxj .
(10.74)

where the state vector is xj = [ej ėj ]T .
The filtered error equation of the entire system in state–space form is given by

Ẋ = AX + BM̂−1W�

E1 = CX.
(10.75)

where A, B, and C are all block diagonal (with Aj , Bj , and Cj on the diagonals,
respectively) and X = [x1 x2 . . . xn]T . Forming the 2n × 2n matrices P = diag
(P1P2 . . . Pn) and Q = diag(Q1 Q2 . . . Qn), we have that P > 0, Q > 0, and

AT P + PA = −Q

PB = CT .
(10.76)

We now use Lyapunov theory to derive an adaptation law [27]. The Lyapunov func-
tion candidate

v(X,�) = XT PX + �T �−1� (10.77)

with � = diag(γ1 γ2 . . . γr ) and γi > 0 is nonnegative in both servo and parameter
errors. Differentiation with respect to time leads to

v̇(X,�) = −XT QX + 2�T
(
WT M̂−1E1 + �−1�̇

)
. (10.78)

If we choose
�̇ = −�WT M̂−1E1, (10.79)

we have
v̇(X,�) = −XT QX, (10.80)

which is nonpositive because Q is positive definite. Since � = P − P̂ , we have
�̇ = − ˙̂

P , and from (10.79) we have the adaptation law

˙̂
P = �WT M̂−1E1. (10.81)

4A rational SPR function T (s) is one that is analytic in the closed right half-plane and has
Re(T (jω)) > 0 ∀ω.
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Equations (10.77) and (10.80) imply that X and � are bounded. The basic update
law is given by (10.81). However, in order to restrict the parameter estimates to lie
within the bounds given in (10.69), we augment the update law for parameter pi with
the reset conditions {

p̂i(t
+) = li , if p̂i(t) ≤ li − δ;

p̂i(t
+) = hi, if p̂i(t) ≥ hi − δ.

(10.82)

Thus, if an estimate moves outside its known bound by an amount δ, it is reset to
its bound. This parameter resetting causes a step change in � in (10.75). This cannot
cause an instantaneous change in X, and so we can write the value of the Lyapunov
function before and after the reset of pi to its lower bound at time tj as

v(tj )= XT PX +
r∑

k=1
k �=i

1
γk

φ2
k + 1

γi

(pi − li + δ)2

v(t+j )= XT PX +
r∑

k=1
k �=i

1
γk

φ2
k + 1

γi

(pi − li )
2.

(10.83)

Therefore, the change in v due to the resetting of p̂i at time tj is

−εj = v(t+j ) − v(tj ) = −(2(pi − li ) − δ)

(
δ

γi

)
, (10.84)

where εj is positive and lower bounded by δ2

γi
. Similarly, if we reset pi to its upper

bound at time tj , we have

−εj = v(t+j ) − v(tj ) = (2(pi − hi) − δ)

(
δ

γi

)
, (10.85)

where εj is positive and lower bounded by δ2

γi
. With this addition of parameter reset-

ting, (10.80) becomes

v̇(X,�) = −XT QX −
q∑
j

δ(t − tj )εj , (10.86)

where q resets take place, and δ(·) here refers to the unit impulse function. Hence, the
addition of parameter resetting maintains the nonpositiveness of v̇(X,�) and hence
the system is stable in the sense of Lyapunov with X and � bounded.

Since X, �, M̂−1, and W are bounded, we see from (10.75) that Ẋ is bounded
as well. Thus, X is uniformly continuous, and so is v̇(X,�). From (10.77) and (10.80)
we have that

lim
t→∞ v(X,�) � v∗ (10.87)

exists, with

v∗ − v(X0,�0) = −
∫ ∞

0
XT QXdt −

q∑
j=1

εj , (10.88)
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where q parameter resettings take place. Since the left-hand side is known to be finite,
and both terms on the right-hand side have the same sign, we know that each term
on the right-hand side must be finite. Hence, at most a finite number q of parameter
resets take place.

We know [28] that since XT QX is positive, uniformly continuous, and has a
finite integral that

lim
t→∞ XT QX = 0, (10.89)

and thus
lim
t→∞ E = 0,

lim
t→∞ Ė = 0.

(10.90)

Hence, the adaptive scheme is stable (in the sense that all signals remain bounded)
and trajectory tracking errors E and Ė converge to zero. As concerns convergence of
the parameter errors, note that if the trajectory is not persistently exciting we can
say only

lim
t→∞

∣∣∣∣�− 1
2 �

∣∣∣∣ = √
v∗. (10.91)

Note that �̈, the actual acceleration of the manipulator, appears in the adaptation law
of any parameter representing an inertia. Manipulators do not usually have acceler-
ation sensors. However, the integrating action of the parameter update law reduces
the necessity for good acceleration information. This has been verified in simulation
and in experiments with an actual manipulator [21].

After a finite amount of time, all parameter resets have occurred, and we may
write the equations describing the complete system (i.e., 10.75 and 10.79) as

[
Ẋ

�̇

]
=

[
A BUT

−�UC 0

] [
X

�

]
, (10.92)

where U = (M̂−1W)T . Several researchers have studied the asymptotic stability of
(10.92). In [29–31] it is shown that (10.92) is uniformly asymptotically stable if the lin-
ear system (A, B, C) meets the earlier SPR condition, and if U satisfies the persistent-
excitation condition

α′Ir ≤
∫ t0+ρ

t0

UUT dt ≤ β ′Ir (10.93)

for all t0, where α′, β ′, and ρ are all positive. Condition (10.93) says that the integral of
UUT must be positive definite and bounded over all intervals of length ρ. Note that
a matrix of the form UUT has dimension r × r but can have a rank of no greater than
n (and usually, r > n). Hence, (10.93) means that U must vary sufficiently over the
interval ρ so that the entire r-dimensional space is spanned. Note that by restricting
the ranges of our estimates we have ensured that M̂ remains invertible, and hence U

is bounded, so that the right-hand inequality in (10.93) is already met.
Next, we claim that because M̂ is a bounded positive definite symmetric matrix,

the left-hand inequality of (10.93) will be satisfied if for some α > 0,

αIr ≤
∫ t0+ρ

t0

WT W dt (10.94)
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is satisfied. A proof by contradiction of this assertion is as follows. Assume that
(10.94) does not imply (10.93). Then we can always find a vector v such that for any
γ > 0

γ > vT

[∫ t0+ρ

t0

(M̂−1W)T (M̂−1W)dt

]
v. (10.95)

In particular, (10.95) holds for γ = αλ2
m̂min

, where

λm̂min = min
t

[
min

i

[
λi(M̂

−1(t))
]]

> 0. (10.96)

So,

αλ2
m̂min

> vT

[∫ t0+ρ

t0

(M̂−1W)T (M̂−1W)dt

]
v

=
∫ t0+ρ

t0

‖ M̂−1Wv ‖2 dt (10.97)

> λ2
m̂min

∫ t0+ρ

t0

‖ Wv ‖2 dt,

or
α >

∫ t0+p

t0

‖Wv‖2dt. (10.98)

But this contradicts (10.94), and hence it is true that (10.94) implies (10.93).
Finally, since we have shown (independent of persistent excitation) that the

servo error converges to zero under this control scheme, the persistent-excitation
condition of (10.94) will be met if the desired trajectory satisfies

αIr ≤
∫ t0+p

t0

WT
d Wddt ≤ βIr , (10.99)

where Wd is the W function evaluated along the desired rather than the actual trajec-
tory of the manipulator. Hence, we have derived a condition on the desired trajectory
such that all parameters will be identified after a sufficient learning interval.
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EXERCISES

10.1 [15] Give the nonlinear control equations for an α, β-partitioned controller for the
system

τ = (2
√

θ + 1)θ̈ + 3θ̇2 − sin(θ).

Choose gains so that this system is always critically damped with kCL = 10.
10.2 [15] Give the nonlinear control equations for an α, β-partitioned controller for the

system
τ = 5θ θ̇ + 2θ̈ − 13θ̇3 + 5.

Choose gains so that this system is always critically damped with kCL = 10.
10.3 [19] Draw a block diagram showing a joint-space controller for the two-link arm

from Section 6.7, such that the arm is critically damped over its entire workspace.
Show the equations inside the blocks of a block diagram.

10.4 [20] Draw a block diagram showing a Cartesian-space controller for the two-link
arm from Section 6.7, such that the arm is critically damped over its entire
workspace (see Example 6.6). Show the equations inside the blocks of a block
diagram.

10.5 [18] Design a trajectory-following control system for the system whose dynamics
are given by

τ1 = m1l
2
1 θ̈1 + m1l1l2θ̇1θ̇2,

τ2 = m2l
2
2(θ̈1 + θ̈2) + υ2θ̇2.

Do you think these equations could represent a real system?
10.6 [17] For the control system designed for the one-link manipulator in Example 10.3,

give an expression for the steady-state position error as a function of error in the
mass parameter. Let ψm = m − m̂. The result should be a function of l, g, θ, ψm, m̂,
and kp . For what position of the manipulator is this at a maximum?

10.7 [26] For the two-degree-of-freedom mechanical system of Fig. 10.17, design a con-
troller that can cause x1 and x2 to follow trajectories and suppress disturbances in
a critically damped fashion.

10.8 [30] Consider the dynamic equations of the two-link manipulator from Section 6.7
in configuration-space form. Derive expressions for the sensitivity of the com-
puted torque value versus small deviations in �. Can you say something about
how often the dynamics should be recomputed in a controller like that of Fig. 10.7
as a function of average joint velocities expected during normal operations?

10.9 [32] Consider the dynamic equations of the two-link manipulator from Exam-
ple 6.6 in Cartesian configuration-space form. Derive expressions for the sensi-
tivity of the computed torque value versus small deviations in �. Can you say



“runall”
2021/5/6
page 355

�

�

�

�

�

�

�

�

Exercises 355

k

x2

m2

m1

b2

b1

x1

FIGURE 10.17: Mechanical system with two degrees of freedom.

something about how often the dynamics should be recomputed in a controller
like that of Fig. 10.15 as a function of average joint velocities expected during
normal operations?

10.10 [15] Design a control system for the system

f = 5xẋ + 2ẍ − 12.

Choose gains so that this system is always critically damped with a closed-loop
stiffness of 20.

10.11 [20] Consider a position-regulation system that (without loss of generality)
attempts to maintain �d = 0. Prove that the control law

τ = −Kp� − M(�)Kυ�̇ + G(�)

yields an asymptotically stable nonlinear system. You may take Kυ to be of the
form Kυ = kυIn where kυ is a scalar, and In is the n × n identity matrix. Hint: This
is similar to example 10.6.

10.12 [20] Consider a position-regulation system that (without loss of generality)
attempts to maintain �d = 0. Prove that the control law

τ = −Kp� − M̂(�)Kυ�̇ + G(�)

yields an asymptotically stable nonlinear system. You may take Kυ to be of the
form Kυ = kυIn where kυ is a scalar and In is the n × n identity matrix. The matrix
M̂(�) is a positive definite estimate of the manipulator mass matrix. Hint: This is
similar to example 10.6.

10.13 [25] Consider a position-regulation system that (without loss of generality)
attempts to maintain �d = 0. Prove that the control law

τ = −M(�)[Kp� + Kυ�̇] + G(�)

yields an asymptotically stable nonlinear system. You may take Kυ to be of the
form Kυ = kυIn where kυ is a scalar, and In is the n × n identity matrix. Hint: This
is similar to Example 10.6.
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10.14 [25] Consider a position-regulation system that (without loss of generality)
attempts to maintain �d = 0. Prove that the control law

τ = −M̂(�)[Kp� + Kυ�̇] + G(�)

yields an asymptotically stable nonlinear system. You may take Kυ to be of the
form Kυ = kυIn, where kυ is a scalar, and In is the n × n identity matrix. The matrix
M̂(�) is a positive definite estimate of the manipulator mass matrix. Hint: This is
similar to Example 10.6.

10.15 [28] Consider a position-regulation system that (without loss of generality)
attempts to maintain �d = 0. Prove that the control law

τ = −Kp� − Kυ�̇

yields a stable nonlinear system. Show that stability is not asymptotic and give an
expression for the steady-state error. Hint: This is similar to Example 10.6.

10.16 [30] Prove the global stability of the Jacobian-transpose Cartesian controller intro-
duced in Section 10.8. Use an appropriate form of velocity feedback to stabilize
the system. Hint: See [18].

10.17 [15] Design a trajectory-following controller for a system with dynamics given by

f = ax2ẋẍ + bẋ2 + csin(x),

such that errors are suppressed in a critically damped fashion over all configura-
tions.

10.18 [15] A system with open-loop dynamics given by

τ = mθ̈ + bθ̇2 + cθ̇

is controlled with the control law

τ = m[θ̈d + kυ ė + kpe] + sin(θ).

Give the differential equation that characterizes the closed-loop action of the
system.

10.19 [11] Find the energy of the the system in Fig. 9.2 at t = 1 s if parameter values
are m = 1, b = 4, and k = 5, and the block (initially at rest) is released from the
position x = 2.

10.20 [12] Give the nonlinear control equations for an α, β-partitioned controller for
the system of Example 10.1 with m = 2, b = 3, and q = 1. Choose gains so that
this system has an error-space natural frequency, wn = 8 and is critically damped.

10.21 [15] Prove that the system of Example 10.1 is stable.
10.22 [16] Design a partitioned joint-space controller for the two-link arm from

section 6.7, such that the arm has stiffness of 18 and is critically damped over its
entire workspace given the following parameters:

l1 = 7, m1 = 3

l2 = 4, m2 = 1

10.23 [16] Give the nonlinear control equations for an α, β-partitioned controller for
the system

τ = 16θ θ̇ + 7θ̈ − 8θ̇4 + 1.

Choose gains so that this system is always critically damped with kCL = 9.
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10.24 [15] Design a control system for the system

f = 15xẋ + 3ẍ − 48.

Choose gains so that this system is always critically damped with a closed-loop
stiffness of 4.

10.25 [15] Design a trajectory-following controller for a system with dynamics given by

f = ax3ẋ2ẍ + bẋ + c cos(x),

such that errors are suppressed in a critically damped fashion over all configura-
tions.

10.26 [15] A system with open-loop dynamics given by

τ = mθ̈ + bθ̇2 + cθ̇ + qθ2 − kθ

is controlled with the control law

τ = m[θ̈d + kvθ̇ + kpe] + cos(θ) + sin(e).

Give the differential equation that characterizes the closed-loop action of the
system.

PROGRAMMING EXERCISE (PART 10)

Repeat Programming Exercise Part 9, and use the same tests, but with a new controller
that uses a complete dynamic model of the 3-link to decouple and linearize the system.
For this case, use

Kp =
⎡
⎣

100.0 0.0 0.0
0.0 100.0 0.0
0.0 0.0 100.0

⎤
⎦ .

Choose a diagonal Kυ that guarantees critical damping over all configurations of the arm.
Compare the results with those obtained with the simpler controller used in Programming
Exercise Part 9.
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C H A P T E R 11

Force Control of Manipulators

11.1 INTRODUCTION
11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS
11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS
11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM
11.5 FORCE CONTROL OF A MASS–SPRING SYSTEM
11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME
11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES

11.1 INTRODUCTION

Position control is appropriate when a manipulator is following a trajectory through
space, but when any contact is made between the end-effector and the manipulator’s
environment, mere position control might not suffice. Consider a manipulator wash-
ing a window with a sponge. The compliance of the sponge might make it possible
to regulate the force applied to the window by controlling the position of the end-
effector relative to the glass. If the sponge is very compliant, or the position of the
glass is known very accurately, this technique could work quite well.

If, however, the stiffness of the end-effector, tool, or environment is high,
it becomes increasingly difficult to perform operations in which the manipulator
presses against a surface. Instead of washing with a sponge, imagine that the
manipulator is scraping paint off a glass surface, using a rigid scraping tool. If there
is any uncertainty in the position of the glass surface or any error in the position
of the manipulator, this task would become impossible. Either the glass would be
broken, or the manipulator would wave the scraping tool over the glass with no
contact taking place.

In both the washing and scraping tasks, it would be more reasonable not to
specify the position of the plane of the glass, but rather to specify a force that is to be
maintained normal to the surface.

More so than in previous chapters, in this chapter we will present methods
that are not yet employed by industrial robots, except in an extremely simplified
way. The major thrust of this chapter is to introduce the hybrid position/force con-
troller, which is one formalism through which industrial robots might someday be
controlled in order to perform tasks requiring force control. However, regardless of
which method(s) emerge as practical for industrial application, many of the concepts
introduced in this chapter will certainly remain valid.

359



“runall”
2021/5/6
page 360

�

�

�

�

�

�

�

�

360 Chapter 11 Force Control of Manipulators

11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS

The majority of the industrial robot population is employed in relatively simple
applications, such as spot welding, spray painting, and pick-and-place operations.
Force control has already appeared in a few applications; for example, some robots
are already capable of simple force control that allows them to do such tasks as
grinding and deburring. Apparently, the next big area of application will be to
assembly-line tasks in which one or more parts are mated. In such parts-mating
tasks, monitoring and control of the forces of contact are extremely important.

Precise control of manipulators in the face of uncertainties and variations in
their work environments is a prerequisite to application of robot manipulators to
assembly operations in industry. It seems that, by providing manipulator hands with
sensors that can give information about the state of manipulation tasks, important
progress can be made toward using robots for assembly tasks. Currently, the dexterity
of manipulators remains quite low and continues to limit their application in the
automated assembly area.

The use of manipulators for assembly tasks requires that the precision with
which parts are positioned with respect to one another be quite high. Current indus-
trial robots are often not accurate enough for these tasks, and building robots that
are might not make sense. Manipulators of greater precision can be achieved only
at the expense of size, weight, and cost. The ability to measure and control contact
forces generated at the hand, however, offers a possible alternative for extending the
effective precision of a manipulation. Because relative measurements are used, abso-
lute errors in the position of the manipulator and the manipulated objects are not as
important as they would be in a purely position-controlled system. Small variations
in relative position generate large contact forces when parts of moderate stiffness
interact, so knowledge and control of these forces can lead to a tremendous increase
in effective positional accuracy.

11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS

The approach presented in this chapter is based on a framework for control in situa-
tions in which motion of the manipulator is partially constrained by contact with one
or more surfaces [1–3]. This framework for understanding partially constrained tasks
is based on a simplified model of interaction between the manipulator’s end-effector
and the environment: We are interested in describing contact and freedoms, so we
consider only the forces due to contact. This is equivalent to doing a quasi-static anal-
ysis and ignoring other static forces, such as certain friction components and gravity.
The analysis is reasonable where forces due to contact between relatively stiff objects
are the dominant source of forces acting on the system. Note that the methodology
presented here is somewhat simplistic and has some limitations, but it is a good way
to introduce the basic concepts involved and to do so at a level appropriate for this
text. For a related, but more general and rigorous methodology, see [19].

Every manipulation task can be broken down into subtasks that are defined
by a particular contact situation occurring between the manipulator end-effector (or
tool) and the work environment. With each such subtask, we can associate a set of
constraints, called the natural constraints, that result from the particular mechan-
ical and geometric characteristics of the task configuration. For instance, a hand in
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contact with a stationary, rigid surface is not free to move through that surface; hence,
a natural position constraint exists. If the surface is frictionless, the hand is not free
to apply arbitrary forces tangent to the surface; thus, a natural force constraint exists.

In our model of contact with the environment, for each subtask configuration,
a generalized surface can be defined with position constraints along the normals to
this surface and force constraints along the tangents. These two types of constraint,
force and position, partition the degrees of freedom of possible end-effector motions
into two orthogonal sets that must be controlled according to different criteria. Note
that this model of contact does not include all possible contacting situations (see [19]
for a more general scheme).

Figure 11.1 shows two representative tasks along with their associated natural
constraints. Notice that, in each case, the task is described in terms of a frame {C}, the
so-called constraint frame, which is located in a task-relevant location. According to
the task, {C} could be fixed in the environment or could move with the end-effector
of the manipulator. In Fig. 11.1(a), the constraint frame is attached to the crank as
shown and moves with the crank, with the X̂ direction always directed toward the
pivot point of the crank. Friction acting at the fingertips ensures a secure grip on
the handle, which is on a spindle so that it can rotate relative to the crank arm. In
Fig. 11.1(b), the constraint frame is attached to the tip of the screwdriver and moves
with it as the task proceeds. Notice that, in the Ŷ direction, the force is constrained
to be zero, because the slot of the screw would allow the screwdriver to slip out in
that direction. In these examples, a given set of constraints remains true throughout
the task. In more complex situations, the task is broken into subtasks for which a
constant set of natural constraints can be identified.

(a) Turning crank

(b) Turning screwdriver

CẐ

CX̂

CX̂

CŶ

CŶ

Natural constraints
υx 5 0 fy 5 0

nz 5 0

υz 5 0

vx 5 0

vy 5 0

υx 5 0
υz 5 0

fy 5 0
nz 5 0

vx 5 0  

vy 5 0

Natural constraints

CẐ

FIGURE 11.1: The natural constraints for two different tasks.
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In Fig. 11.1, position constraints have been indicated by giving values for com-
ponents of velocity of the end-effector, V, described in frame {C}. We could just as
well have indicated position constraints by giving expressions for position, rather
than velocities; however, in many cases, it is simpler to specify a position constraint
as a “velocity equals zero” constraint. Likewise, force constraints have been specified
by giving values to components of the force-moment vector, F, acting on the end-
effector described in frame {C}. Note that when we say position constraints, we mean
position or orientation constraints, and when we say force constraints, we mean force
or moment constraints. The term natural constraints is used to indicate that these con-
straints arise naturally from the particular contacting situation. They have nothing
to do with the desired or intended motion of the manipulator.

Additional constraints, called artificial constraints, are introduced in accor-
dance with the natural constraints to specify desired motions or force application.
That is, each time the user specifies a desired trajectory in either position or force,
an artificial constraint is defined. These constraints also occur along the tangents
and normals of the generalized constraint surface, but, unlike natural constraints,
artificial force constraints are specified along surface normals, and artificial position
constraints along tangents—hence, consistency with the natural constraints is
preserved.

Figure 11.2 shows the natural and artificial constraints for two tasks. In Fig. 11.2,
α1 is the rate at which the crank is turned, and α2 is the rate at which the screwdriver

(a) Turning crank

(b) Turning screwdriver

CẐ

CẐ

CX̂

CX̂

CŶ

CŶ

Natural constraints

Artificial constraints

υx 5 0

υy 5 0

fy 5 0
nz 5 0

fx 5 0

fz 5 a3

nx 5 0

ny 5 0

υz 5 0

vx 5 0

vz 5 a2

vy 5 0

υx 5 0
υz 5 0

fy 5 0
nz 5 0

υy 5 ra1 fx 5 0
fz 5 0
nx 5 0
ny 5 0

vx 5 0

vz 5 a1

vy 5 0

Natural constraints

Artificial constraints

FIGURE 11.2: The natural and artificial constraints for two tasks.
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is turned. Note that when a natural position constraint is given for a particular degree
of freedom in {C}, an artificial force constraint should be specified, and vice versa.
At any instant, any given degree of freedom in the constraint frame is controlled to
meet either a position or a force constraint.

Assembly strategy is a term that refers to a sequence of planned artificial con-
straints that will cause the task to proceed in a desirable manner. Such strategies
must include methods by which the system can detect a change in the contacting sit-
uation so that transitions in the natural constraints can be tracked. With each such
change in natural constraints, a new set of artificial constraints is recalled from the
set of assembly strategies and enforced by the control system. Methods for automat-
ically choosing the constraints for a given assembly task await further research. In
this chapter, we will assume that a task has been analyzed in order to determine the
natural constraints, and that a human planner has determined an assembly strategy
with which to control the manipulator.

Note that we will usually ignore friction forces between contacting surfaces in
our analysis of tasks. This will suffice for our introduction to the problem, and in fact
will yield strategies that work in many cases. Usually, friction forces of sliding are
acting in directions chosen to be position controlled, and so these forces appear as
disturbances to the position servo and are overcome by the control system.

EXAMPLE 11.1

Figure 11.3(a)–(d) shows an assembly sequence used to put a round peg into a round
hole. The peg is brought down onto the surface to the left of the hole, then slid along
the surface until it drops into the hole. It is then inserted until the peg reaches the
bottom of the hole, at which time the assembly is complete. Each of the four indi-
cated contacting situations defines a subtask. For each of the subtasks shown, give
the natural and artificial constraints. Also, indicate how the system senses the change
in the natural constraints as the operation proceeds.

First, we will attach the constraint frame to the peg as shown in Fig. 11.3(a). In
Fig. 11.3(a), the peg is in free space, and so the natural constraints are

CF = 0. (11.1)

(b)(a) (c) (d)

CX̂

CẐ

FIGURE 11.3: The sequence of four contacting situations for peg insertion.
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Therefore, the artificial constraints in this case constitute an entire position trajectory,
which moves the peg in the CẐ direction toward the surface. For example,

Cν =

⎡
⎢⎢⎢⎢⎣

0
0

υapproach
0
0
0

⎤
⎥⎥⎥⎥⎦

, (11.2)

where υapproach is the speed with which to approach the surface.
In Fig. 11.3(b), the peg has reached the surface. To detect that this has

happened, we observe the force in the CẐ direction. When this sensed force exceeds
a threshold, we sense contact, which implies a new contacting situation with a new
set of natural constraints. Assuming that the contacting situation is as shown in
Fig. 11.3(b), the peg is not free to move in CẐ, or to rotate about CX̂ or CŶ . In the
other three degrees of freedom, it is not free to apply forces; hence, the natural
constraints are

Cυz = 0,

Cωx = 0,

Cωy = 0, (11.3)
Cfx = 0,

Cfy = 0,

Cnz = 0.

The artificial constraints describe the strategy of sliding along the surface in the
CX̂ direction while applying small forces to ensure that contact is maintained. Thus,
we have

Cυx = υslide,

Cυy = 0,

Cωz = 0,

Cfz = fcontact, (11.4)
Cnx = 0,

Cny = 0.

where fcontact is the force applied normal to the surface as the peg is slid, and υslide
is the velocity with which to slide across the surface.

In Fig. 11.3(c), the peg has fallen slightly into the hole. This situation is sensed
by observing the velocity in the CẐ direction and waiting for it to cross a threshold
(to become nonzero, in the ideal case). When this is observed, it signals that once
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again the natural constraints have changed, and thus our strategy (as embodied in
the artificial constraints) must change. The new natural constraints are

Cυx = 0,

Cυy = 0,

Cωx = 0,

Cωy = 0, (11.5)
Cfx = 0,

Cnz = 0.

We choose the artificial constraints to be

Cυz = υinsert,

Cωz = 0,

Cfx = 0, (11.6)
Cfy = 0,

Cnx = 0,

Cny = 0,

where υinsert is the velocity at which the peg is inserted into the hole. Finally, the sit-
uation shown in Fig. 11.3(d) is detected when the force in the CẐ direction increases
above a threshold.

It is interesting to note that changes in the natural constraints are always
detected by observing the position or force variable that is not being controlled. For
example, to detect the transition from Fig. 11.3(b) to Fig. 11.3(c), we monitor the
velocity in CẐ while we are controlling force in CẐ. To discover when the peg has
hit the bottom of the hole, we monitor Cfz, although we are controlling Cυz.

The framework we have introduced is somewhat simplistic. A more general and
rigorous method of “splitting” tasks into position-controlled and force-controlled
components can be found in [19].

Determining assembly strategies for fitting more complicated parts together is
quite complex. We have also neglected to include the effects of uncertainty in our
simple analysis of this task. The development of automatic planning systems that
include the effects of uncertainty, and can be applied to practical situations has been
a research topic [4–8]. For a good review of these methods, see [9].

11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM

Figure 11.4 shows two extreme examples of contacting situations. In Fig. 11.4(a), the
manipulator is moving through free space. In this case, the natural constraints are
all force constraints—there is nothing to react against, so all forces are constrained



“runall”
2021/5/6
page 366

�

�

�

�

�

�

�

�

366 Chapter 11 Force Control of Manipulators

v

f

N

υ

FIGURE 11.4: The two extremes of contacting situations. The manipulator on the left
is moving in free space where no reaction surface exits. The manipulator on the right
is glued to the wall, so no free motion is possible.

to be zero.1 With an arm having six degrees of freedom, we are free to move in six
degrees of freedom in position, but we are unable to exert forces in any direction.
Figure 11.4(b) shows the extreme situation of a manipulator with its end-effector
glued to a wall. In this case, the manipulator is subject to six natural position con-
straints, because it is not free to be repositioned. However, the manipulator is free
to exert forces and torques to the object with six degrees of freedom.

In Chapters 9 and 10, we studied the position-control problem that applies to
the situation of Fig. 11.4(a). The situation of Fig. 11.4(b) does not occur very often
in practice; we usually must consider force control in the context of partially con-
strained tasks, in which some degrees of freedom of the system are subject to position
control and others are subject to force control. Thus, in this chapter, we are interested
in considering hybrid position/force control schemes.

The hybrid position/force controller must solve three problems:

1. Position control of a manipulator along directions in which a natural force con-
straint exists.

2. Force control of a manipulator along directions in which a natural position con-
straint exists.

3. A scheme to implement the arbitrary mixing of these modes along orthogonal
degrees of freedom of an arbitrary frame, {C}.

11.5 FORCE CONTROL OF A MASS–SPRING SYSTEM

In Chapter 9, we began our study of the complete position-control problem with the
study of the very simple problem of controlling a single block of mass. We were then

1It is important to remember that we are concerned here with forces of contact between the end-
effector and environment, not inertial forces.
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able, in Chapter 10, to use a model of the manipulator in such a way that the problem
of controlling the entire manipulator became equivalent to controlling n independent
masses (for a manipulator with n joints). In a similar way, we begin our look at force
control by controlling the force applied by a simple single-degree-of-freedom system.

In considering forces of contact, we must make some model of the environment
upon which we are acting. For the purposes of conceptual development, we will use
a very simple model of interaction between a controlled body and the environment.
We model contact with an environment as a spring—that is, we assume our system
is rigid, and the environment has some stiffness, ke.

Let us consider the control of a mass attached to a spring, as in Fig. 11.5. We
will also include an unknown disturbance force, fdist, which might be thought of as
modeling unknown friction or cogging in the manipulator’s gearing. The variable we
wish to control is the force acting on the environment, fe, which is the force acting
in the spring:

fe = kex. (11.7)

The equation describing this physical system is

f = mẍ + kex + fdist, (11.8)

or, written in terms of the variable we wish to control, fe,

f = mk−1
e f̈e + fe + fdist. (11.9)

Using the partitioned-controller concept, as well as

α = mk−1
e

and

β = fe + fdist,

we arrive at the control law,

f = mk−1
e

[
f̈d + kυf ėf + kpf ef

] + fe + fdist, (11.10)

x

m
ke

fdist

f

FIGURE 11.5: A spring–mass system.
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where ef = fd − fe is the force error between the desired force, fd , and the sensed
force on the environment, fe. If we could compute (11.10), we would have the closed-
loop system

ëf + kυf ėf + kpf ef = 0. (11.11)

However, we cannot use knowledge of fdist in our control law, and so (11.10)
is not feasible. We might leave that term out of the control law, but a steady-state
analysis shows that there is a better choice, especially when the stiffness of the envi-
ronment, ke, is high (the usual situation).

If we choose to leave the fdist term out of our control law, equate (11.9) and
(11.10), and do a steady-state analysis by setting all time derivatives to zero, we
find that

ef = fdist

α
, (11.12)

where α = mk−1
e kpf , the effective force-feedback gain; however, if we choose to use

fd in the control law (11.10) in place of the term fe + fdist, we find the steady-state
error to be

ef = fdist

1 + α
. (11.13)

When the environment is stiff, as is often the case, α might be small, and so the
steady-state error calculated in (11.13) is quite an improvement over that of (11.12).
Therefore, we suggest the control law

f = mk−1
e

[
f̈d + kυf ėf + kpf ef

] + fd. (11.14)

Figure 11.6 is a block diagram of the closed-loop system using the control law (11.14).
Generally, practical considerations change the implementation of a force-

control servo quite a bit from the ideal shown in Fig. 11.6. First, force trajectories are

S

S

1

1

1

2

2

1

1

S

S
1 1

KpfKυf

mke
21fD

..

fD

.

fD

f 5 mx 1 kex 1 fdist
.. fef

System

d
dt

FIGURE 11.6: A force control system for the spring–mass system.



“runall”
2021/5/6
page 369

�

�

�

�

�

�

�

�

Section 11.5 Force Control of a Mass–Spring System 369

S
1

2

S
1 1

S
1

2

m

kυf

fD
f 5 mx 1 kex 1 fdist

..

fe
fe

f

System

kpf

ke

x
.

x
.

FIGURE 11.7: A practical force-control system for the spring–mass system.

usually constants—that is, we are usually interested in controlling the contact force
to be at some constant level. Applications in which contact forces should follow
some arbitrary function of time are rare. Therefore, the ḟd and f̈d inputs of the
control system are very often permanently set to zero. Another reality is that sensed
forces are quite “noisy,” and numerical differentiation to compute ḟe is ill-advised.
However, fe = kex, so we can obtain the derivative of the force on the environment
as ḟe = keẋ. This is much more realistic, in that most manipulators have means of
obtaining good measures of velocity. Having made these two pragmatic choices, we
write the control law as

f = m
[
kpf k−1

e ef − kυf ẋ
]

+ fd, (11.15)

with the corresponding block diagram shown in Fig. 11.7.
Note that an interpretation of the system of Fig. 11.7 is that force errors gener-

ate a set-point for an inner velocity-control loop with gain kυf . Some force-control
laws also include an integral term to improve steady-state performance.

An important remaining problem is that the stiffness of the environment, ke,
appears in our control law, but is often unknown and perhaps changes from time to
time. However, often an assembly robot is dealing with rigid parts, and ke could be
guessed to be quite high. Generally this assumption is made, and gains are chosen
such that the system is somewhat robust with respect to variations in ke.

The purpose in constructing a control law to control the force of contact has
been to show one suggested structure, and to expose a few issues. For the remainder
of this chapter, we will simply assume that such a force-controlling servo could be
built and abstract it away into a black box, as shown in Fig. 11.8. In practice, it is not
easy to build a high-performance force servo, and it is currently an area of active
research [11–14]. For a good review of this area, see [15].
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Force
servo SystemfD

fe

fef

FIGURE 11.8: The force-control servo as a black box.

11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME

In this section, we will introduce an architecture for a control system that implements
the hybrid position/force controller.

A Cartesian Manipulator Aligned with {C}
We will first consider the simple case of a manipulator having three degrees of free-
dom with prismatic joints acting in the Ẑ, Ŷ , and X̂ directions. For simplicity, we
will assume that each link has mass m and slides on frictionless bearings. Let us also
assume that the joint motions are lined up exactly with the constraint frame, {C}. The
end-effector is in contact with a surface of stiffness ke that is oriented with its normal
in the −CŶ direction. Hence, force control is required in that direction, but position
control in the CX̂ and CẐ directions (see Fig. 11.9).

CZ

CY

FIGURE 11.9: A Cartesian manipulator with three degrees of freedom in contact with
a surface.
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S
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1
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S9
Force

control
law

Position
control

lawxd
x

xd
.
xd
..

Constraints

E

d

FIGURE 11.10: The hybrid controller for a 3-DOF Cartesian arm.

In this case, the solution to the hybrid position/force control problem is clear.
We should control joints 1 and 3 with the position controller developed for a unit
mass in Chapter 9. Joint 2 (operating in the Ŷ direction) should be controlled with
the force controller developed in Section 11.4. We could then supply a position tra-
jectory in the CX̂ and CẐ directions, while independently supplying a force trajectory
(perhaps just a constant) in the CŶ direction.

If we wish to be able to switch the nature of the constraint surface such that its
normal might also be X̂ or Ẑ, we can slightly generalize our Cartesian arm-control
system as follows: We build the structure of the controller such that we may spec-
ify a complete position trajectory in all three degrees of freedom, and also a force
trajectory in all three degrees of freedom. Of course, we can’t control so as to meet
these six constraints at any one time—rather, we will set modes to indicate which
components of which trajectory will be followed at any given time.

Consider the controller shown in Fig. 11.10. Here, we indicate the control of
all three joints of our simple Cartesian arm in a single diagram by showing both
the position controller and the force controller. The matrices S and S′ have been
introduced to control which mode—position or force—is used to control each joint
of the Cartesian arm. The S matrix is diagonal, with ones and zeros on the diagonal.
Where a one is present in S, a zero is present in S′ and position control is in effect.
Where a zero is present in S, a one is present in S′ and force control is in effect.
Hence the matrices S and S′ are simply switches that set the mode of control to
be used with each degree of freedom in {C}. In accordance with the setting of S,
there are always three components of the trajectory being controlled, yet the mix
between position control and force control is arbitrary. The other three components
of desired trajectory and associated servo errors are being ignored. Hence, when a
certain degree of freedom is under force control, position errors on that degree of
freedom are ignored.
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EXAMPLE 11.2

For the situation shown in Fig. 11.9, with motions in the CŶ direction constrained by
the reaction surface, give the matrices S and S′.

Because the X̂ and Ẑ components are to be position controlled, we enter ones
on the diagonal of S corresponding to these two components. This will cause the
position servo to be active in these two directions, and the input trajectory will be
followed. Any position trajectory input for the Ŷ component will be ignored. The S′
matrix has the ones and zeros on the diagonal inverted; hence, we have

S =
⎡
⎣

1 0 0
0 0 0
0 0 1

⎤
⎦ ,

S′ =
⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ . (11.16)

Figure 11.10 shows the hybrid controller for the special case that the joints line
up exactly with the constraint frame, {C}. In the following subsection, we use tech-
niques studied in previous chapters to generalize the controller to work with general
manipulators and for an arbitrary {C}; however, in the ideal case, the system per-
forms as if the manipulator had an actuator “lined up” with each of the degrees of
freedom in {C}.

A General Manipulator

Generalizing the hybrid controller shown in Fig. 11.10 so that a general manipulator
may be used is straightforward with the concept of Cartesian-based control. Chapter
6 discussed how the equations of motion of a manipulator could be written in terms
of Cartesian motion of the end-effector. Chapter 10 showed how such a formulation
might be used to achieve decoupled Cartesian position control of a manipulator. The
major idea is that, through use of a dynamic model written in Cartesian space, it is
possible to control so the combined system of the actual manipulator and computed
model appear as a set of independent, uncoupled unit masses. Once this decou-
pling and linearizing are done, we can apply the simple servo already developed in
Section 11.4.

Figure 11.11 shows the compensation based on the formulation of the manip-
ulator dynamics in Cartesian space such that the manipulator appears as a set of
uncoupled unit masses. For use in the hybrid control scheme, the Cartesian dynam-
ics and the Jacobian are written in the constraint frame, {C}. Likewise, the kinematics
are computed with respect to the constraint frame.

Because we have designed the hybrid controller for a Cartesian manipulator
aligned with the constraint frame, and because the Cartesian decoupling scheme pro-
vides us with a system with the same input–output properties, we need only combine
the two to generate the generalized hybrid position/force controller.
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.
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FIGURE 11.11: The Cartesian decoupling scheme introduced in Chapter 10.
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FIGURE 11.12: The hybrid position/force controller for a general manipulator. For
simplicity, the velocity-feedback loop has not been shown.

Figure 11.12 is a block diagram of the hybrid controller for a general manipu-
lator. Note that the dynamics are written in the constraint frame, as is the Jacobian.
The kinematics are written to include the transformation of coordinates into the con-
straint frame, and the sensed forces are likewise transformed into {C}. Servo errors
are calculated in {C}, and control modes within {C} are set through proper choice of
S.2 Figure 11.13 shows a manipulator being controlled by such a system.

2The partitioning of control modes along certain task-related directions has been generalized in [10]
from the more basic approach presented in this chapter.
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FIGURE 11.13: A PUMA 560 manipulator washes a window under control of
the COSMOS system developed under O. Khatib at Stanford University. These
experiments use force-sensing fingers and a control structure similar to that of
Fig. 11.12 [10]. Photo courtesy of O. Khatib.

Adding Variable Stiffness

Controlling a degree of freedom in strict position or force control represents control
at two ends of the spectrum of servo stiffness. An ideal position servo is infinitely stiff
and rejects all force disturbances acting on the system. In contrast, an ideal force
servo exhibits zero stiffness and maintains the desired force application regardless
of position disturbances. It could be useful to be able to control the end-effector to
exhibit stiffnesses other than zero or infinite. In general, we might wish to control the
mechanical impedance of the end-effector [14, 16, 17].

In our analysis of contact, we have imagined that the environment is very stiff.
When we contact a stiff environment, we use zero-stiffness force control. When we
contact zero stiffness (moving in free space) we use high-stiffness position control.
Hence, it appears that controlling the end-effector to exhibit a stiffness that is approx-
imately the inverse of the local environment is perhaps a good strategy. Therefore,
in dealing with plastic parts or springs, we could wish to set servo stiffness to other
than zero or infinite.

Within the framework of the hybrid controller, this is done simply by using
position control and lowering the position gain corresponding to the appropriate
degree of freedom in {C}. Generally, if this is done, the corresponding velocity gain
is lowered so that that degree of freedom remains critically damped. The ability to
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change both position and velocity gains of the position servo along the degrees of
freedom of {C} allows the hybrid position/force controller to implement a general-
ized impedance of the end-effector [17]. However, in many practical situations we
are dealing with the interaction of stiff parts, so pure position control or pure force
control is desired.

11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES

True force control, such as the hybrid position/force controller introduced in this
chapter, does not exist today in industrial robots. Among the problems of practical
implementation are the rather large amount of computation required, lack of accu-
rate parameters for the dynamic model, lack of rugged force sensors, and the burden
of difficulty placed on the user in specifying a position/force strategy.

Passive Compliance

Extremely rigid manipulators with very stiff position servos are ill-suited to tasks in
which parts come into contact and contact forces are generated. In such situations,
parts are often jammed or damaged. Ever since early experiments with manipulators
attempting to do assembly, it was realized that, to the extent that the robots could
perform such tasks, it was only thanks to the compliance of the parts, of the fixtures,
or of the arm itself. This ability of one or more parts of the system to “give” a little
was often enough to allow the successful mating of parts.

Once this was realized, devices were specially designed to introduce compli-
ance into the system on purpose. The most successful such device is the RCC or
remote center compliance device developed at Draper Labs [18]. The RCC was clev-
erly designed so that it introduced the “right” kind of compliance, which allowed cer-
tain tasks to proceed smoothly and rapidly with little or no chance of jamming. The
RCC is essentially a spring with six degrees of freedom, which is inserted between
the manipulator’s wrist and the end-effector. By setting the stiffnesses of the six
springs, various amounts of compliance can be introduced. Such schemes are called
passive-compliance schemes, and are used in industrial applications of manipulators
in some tasks.

Compliance through Softening Position Gains

Rather than achieving compliance in a passive, and therefore fixed, way, it is possi-
ble to devise schemes in which the apparent stiffness of the manipulator is altered
through adjustment of the gains of a position-control system. A few industrial robots
do something of this type for applications such as grinding, in which contact with a
surface needs to be maintained but delicate force control is not required.

A particularly interesting approach has been suggested by Salisbury [16]. In
this scheme, the position gains in a joint-based servo system are modified in such a
way that the end-effector appears to have a certain stiffness along Cartesian degrees
of freedom: Consider a general spring with six degrees of freedom. Its action could
be described by

F = Kpxδχ, (11.17)
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where Kpx is a diagonal 6 × 6 matrix with three linear stiffnesses followed by three
torsional stiffnesses on the diagonal. How could we make the end-effector of a
manipulator exhibit this stiffness characteristic?

Recalling the definition of the manipulator Jacobian, we have

δχ = J (�)δ�. (11.18)

Combining with (11.17) gives

F = KpxJ (�)δ�. (11.19)

From static-force considerations, we have

τ = J T (�)F, (11.20)

which, combined with (11.19), yields

τ = JT (�)KpxJ (�)δ�. (11.21)

Here, the Jacobian is usually written in the tool frame. Equation (11.21) is an expres-
sion for how joint torques should be generated as a function of small changes in joint
angles, δ�, in order to make the manipulator end-effector behave as a Cartesian
spring with six degrees of freedom.

Whereas a simple joint-based position controller might use the control law

τ = KpE + KυĖ, (11.22)

where Kp and Kυ are constant diagonal gain matrices and E is servo error defined
as �d − �, Salisbury suggests using

τ = J T (�)KpxJ (�)E + KυĖ, (11.23)

where Kpx is the desired stiffness of the end-effector in Cartesian space. For a manip-
ulator with six degrees of freedom, Kpx is diagonal with the six values on the diagonal
representing the three translational and three rotational stiffnesses that the end-
effector is to exhibit. Essentially, through use of the Jacobian, a Cartesian stiffness
has been transformed to a joint-space stiffness.

Force Sensing

Force sensing allows a manipulator to detect contact with a surface and, using this
sensation, to take some action. For example, the term guarded move is sometimes
used to mean the strategy of moving under position control until a force is felt, then
halting motion. Additionally, force sensing can be used to weigh objects that the
manipulator lifts. This can be used as a simple check during a parts-handling opera-
tion, to ensure that a part was acquired or that the appropriate part was acquired.

Some commercially available robots come equipped with force sensors in the
end-effector. These robots can be programmed to stop motion or take another action
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when a force threshold is exceeded, and some can be programmed to weigh objects
that are grasped in the end-effector.
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EXERCISES

11.1 [12] Give the natural constraints present for a peg of square cross section sliding
into a hole of square cross section. Show your definition of {C} in a sketch.

11.2 [10] Give the artificial constraints (i.e., the trajectory) you would suggest in order
to cause the peg in Exercise 11.1 to slide further into the hole without jamming.

11.3 [20] Show that using the control law (11.14) with a system given by (11.9) results
in the error-space equation

ëf + kυf
ėf + (kpf + m−1ke)ef = m−1kefdist,

and, hence, that choosing gains to provide critical damping is possible only if the
stiffness of the environment, ke, is known.

11.4 [17] Given

A
BT =

⎡
⎢⎣

0.866 −0.500 0.000 10.0
0.500 0.866 0.000 0.0
0.000 0.000 1.000 5.0

0 0 0 1

⎤
⎥⎦ ,

if the force–torque vector at the origin of {A} is

Aν =

⎡
⎢⎢⎢⎢⎢⎣

0.0
2.0

−3.0
0.0
0.0
4.0

⎤
⎥⎥⎥⎥⎥⎦

,

find the 6 × 1 force–torque vector with reference point at the origin of {B}.
11.5 [17] Given

A
BT =

⎡
⎢⎣

0.866 0.500 0.000 10.0
−0.500 0.866 0.000 0.0

0.000 0.000 1.000 5.0
0 0 0 1

⎤
⎥⎦ ,

if the force–torque vector at the origin of {A} is

Aν =

⎡
⎢⎢⎢⎢⎢⎣

6.0
6.0
0.0
5.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎦

,

find the 6 × 1 force–torque vector with reference point at the origin of {B}.
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11.6 [18] Describe in English how you accomplish the insertion of a book into a narrow
crack between books on your crowded bookshelf.

11.7 [20] Give the natural and artificial constraints for the task of closing a hinged door
with a manipulator. Make any reasonable assumptions needed. Show your defini-
tion of {C} in a sketch.

11.8 [20] Give the natural and artificial constraints for the task of uncorking a bottle of
champagne with a manipulator. Make any reasonable assumptions needed. Show
your definition of {C} in a sketch.

11.9 [41] For the stiffness servo system of Section 11.7, we have made no claim that the
system is stable. Assume that (11.23) is used as the servo portion of a decoupled
and linearized manipulator (so that the n joints appear as unit masses). Prove that
the controller is stable for any Kυ which is negative definite.

11.10 [48] For the stiffness servo system of Section 11.7, we have made no claim that
the system is or can be critically damped. Assume that (11.23) is used as the servo
portion of a decoupled and linearized manipulator (so that the n joints appear as
unit masses). Is it possible to design a Kp that is a function of �, and causes the
system to be critically damped over all configurations?

11.11 [15] As shown in Fig. 11.14, a block is constrained below by a floor, and to the
side by a wall. Assuming this contacting situation is maintained over an interval
of time, give the natural constraints that are present.

11.12 [14] A poultry processing task requires a cut around the shoulder that bisects ten-
dons, yet leaves bone unaltered. In other words, the knife blade presses down
firmly but not too much so. If machine vision determines the Cartesian path for
the cut and also the surface normal, then give the natural and artificial constraints.
Show your definition of {C} in a sketch.

11.13 [17] Careful threading of a nut onto a screw is aided by starting with a counter-
clockwise rotation to get the start of the nut thread at the start of the screw thread.
Then the nut is threaded with a clockwise rotation. During the counterclockwise
rotation, the nut is pushed away from the screw until the thread starts passing each
other, then the nut briefly falls back toward the screw, which serves to indicate

cY^

cX^

cZ^

FIGURE 11.14: A block constrained by a floor below and a wall to the side.
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380 Chapter 11 Force Control of Manipulators

that the clockwise rotation should commence. For both of these steps of the pro-
cedure, give the natural and artificial constraints. Show your definition of {C} in
a sketch.

11.14 [15] In order to pick apples, harvesters simultaneously pull with a measured force
in a direction parallel to the stem and twist the fruit about its stem with a measured
torque. Assuming an adequate gripper, give the natural and artificial constraints
for this task. Show your definition of {C} in a sketch. How can the controller detect
completion of this picking task?

11.15 [17] Say that a torus is constrained by a cylinder passing through its center. If the
two diameters are equal, give the natural constraints that are present. Show your
definition of {C} in a sketch.

11.16 [15] It is proposed to use a robot to sort two different parts that resemble cylin-
ders and will be grasped by one end. One part is longer, but both have the same
mass; each has its center of mass at the midpoint of its axis. How might the con-
troller identify which part is being grasped, assuming that visual recognition is not
possible?

11.17 [20] Compare the sensitivity of ef to ke for (11.12) and (11.13) assuming that
ke � mkpf .

11.18 [17] Given

A
BT =

⎡
⎢⎣

0.859 −0.371 0.354 12.0
0.245 0.903 0.354 0.0

−0.450 −0.217 0.866 5.0
0 0 0 1

⎤
⎥⎦ ,

if the force-torque vector at the origin of {A} is

Aν =

⎡
⎢⎢⎢⎢⎢⎣

0.0
3.0

−5.0
2.0
0.0
4.0

⎤
⎥⎥⎥⎥⎥⎦

,

11.19 [17] Given

A
BT =

⎡
⎢⎣

0.000 −1.000 0.000 19.0
0.500 0.000 −0.866 0.0
0.866 0.000 0.500 5.0

0 0 0 1

⎤
⎥⎦ ,

if the force-torque vector at the origin of {A} is

Aν =

⎡
⎢⎢⎢⎢⎢⎣

5.0
5.0
0.0
13.0
1.0
2.0

⎤
⎥⎥⎥⎥⎥⎦

,

find the 6 × 1 force-torque vector with reference point at the origin of {B}.

PROGRAMMING EXERCISE (PART 11)

Implement a Cartesian stiffness-control system for the three-link planar manipulator by
using the control law (11.23) to control the simulated arm. Use the Jacobian written in
frame {3}.
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For the manipulator in position � = [60.0 −90.0 30.0] and for Kpx of the form

Kpx =
⎡
⎣

ksmall 0.0 0.0
0.0 kbig 0.0
0.0 0.0 kbig

⎤
⎦ ,

simulate the application of the following static forces:

1. a 1-newton force acting at the origin of {3} in the X̂3 direction, and
2. a 1-newton force acting at the origin of {3} in the Ŷ3 direction.

The values of ksmall and kbig should be found experimentally. Use a large value of
kbig for high stiffness in the Ŷ3 direction, and a low value of ksmall for low stiffness in the
X̂3 direction. What are the steady-state deflections in the two cases?
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C H A P T E R 12

Robot Programming Languages
and Systems

12.1 INTRODUCTION
12.2 THE THREE LEVELS OF ROBOT PROGRAMMING
12.3 A SAMPLE APPLICATION
12.4 REQUIREMENTS OF A ROBOT PROGRAMMING LANGUAGE
12.5 PROBLEMS PECULIAR TO ROBOT PROGRAMMING LANGUAGES

12.1 INTRODUCTION

In this chapter, we will begin to consider the interface between the human user and
an industrial robot. It is by means of this interface that a user takes advantage of
all the underlying mechanics and control algorithms we have studied in the previous
chapters.

The sophistication of the user interface is becoming extremely important as
manipulators and other programmable automation are applied to more and more
demanding industrial applications. It turns out that the nature of the user interface
is a very important concern. In fact, most of the challenge of the design and use of
industrial robots focuses on this aspect of the problem.

Robot manipulators differentiate themselves from fixed automation by being
“flexible,” which means programmable. Not only are the movements of manipula-
tors programmable, but, through the use of sensors and communications with other
factory automation, manipulators can adapt to variations as the task proceeds.

In considering the programming of manipulators, it is important to remember
that they are typically only a minor part of an automated process. The term work-
cell is used to describe a local collection of equipment, which may include one or
more manipulators, conveyor systems, parts feeders, and fixtures. At the next higher
level, workcells might be interconnected in factorywide networks so a central control
computer can control the overall factory flow. Hence, the programming of manipu-
lators is often considered within the broader problem of programming a variety of
interconnected machines in an automated factory workcell.

Unlike the material in the previous chapters, the material in this chapter (and
the next) is of a nature that constantly changes. It is therefore difficult to present this
material in a detailed way. Rather, we will attempt to point out the underlying fun-
damental concepts, and we will leave it to the reader to seek out the latest examples,
as industrial technology continues to move forward.

383
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384 Chapter 12 Robot Programming Languages and Systems

12.2 THE THREE LEVELS OF ROBOT PROGRAMMING

There have been many styles of user interface developed for programming robots.
Before the rapid proliferation of microcomputers in industry, robot controllers
resembled the simple sequencers often used to control fixed automation. Modern
approaches focus on computer programming, and issues in programming robots
include all the issues faced in general computer programming—and more.

Teach by Showing

Early robots were all programmed by a method that we will call teach by showing,
which involved moving the robot to a desired goal point and recording its posi-
tion in a memory that the sequencer would read during playback. During the teach
phase, the user would guide the robot either by hand or through interaction with a
teach pendant. Teach pendants are handheld button boxes that allow control of each
manipulator joint, or of each Cartesian degree of freedom. Some such controllers
allow testing and branching, so that simple programs involving logic can be entered.
Some teach pendants have alphanumeric displays and are approaching hand-held
terminals in complexity. Figure 12.1 shows an operator using a teach pendant to pro-
gram a large industrial robot.

FIGURE 12.1: The GMF S380 is often used in automobile-body spot-welding applica-
tions. Here, an operator uses a teach-pendant interface to program the manipulator.
Photo courtesy of GMFanuc Corp.
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Explicit Robot Programming Languages

Ever since the arrival of inexpensive and powerful computers, the trend has been
increasingly toward programming robots via programs written in computer program-
ming languages. Usually, these computer programming languages have special fea-
tures that apply to the problems of programming manipulators, and so are called
robot programming languages (RPLs). Most of the systems that come equipped
with a robot programming language have nonetheless retained a teach-pendant-style
interface also.

Robot programming languages have likewise taken on many forms. We will
split them into three categories:

1. Specialized manipulation languages. These robot programming languages have
been built by developing a completely new language that, although addressing
robot-specific areas, might well be considered a general computer program-
ming language. An example is the VAL language developed to control the
industrial robots by Unimation, Inc [1]. VAL was developed especially as a
manipulator control language; as a general computer language, it was quite
weak. For example, it did not support floating-point numbers or character
strings, and subroutines could not pass arguments. A more recent version,
V-II, provided these features [2]. The current incarnation of this language, V+,
includes many new features [13]. Another example of a specialized manip-
ulation language is AL, developed at Stanford University [3]. Although the
AL language is now a relic of the past, it nonetheless provides good examples
of some features still not found in most modern languages (i.e. force control,
parallelism). Also, because it was built in an academic environment, there are
references available to describe it [3]. For these reasons, we continue to make
reference to it.

2. Robot library for an existing computer language. These robot programming
languages have been developed by starting with a popular computer language
(e.g., Pascal) and adding a library of robot-specific subroutines. The user then
writes a Pascal program making use of frequent calls to the predefined subrou-
tine package for robot-specific needs. An examples is AR-BASIC from Amer-
ican Cimflex [4], essentially a subroutine library for a standard BASIC imple-
mentation. JARS, developed by NASA’s Jet Propulsion Laboratory, is an exam-
ple of such a robot programming language based on Pascal [5].

3. Robot library for a new general-purpose language. These robot programming
languages have been developed by first creating a new general-purpose
language as a programming base, then supplying a library of predefined robot-
specific subroutines. Examples of such robot programming languages are
RAPID developed by ABB Robotics [6], AML developed by IBM [7], and
KAREL developed by GMF Robotics [8].

Studies of actual application programs for robotic workcells have shown that
a large percentage of the language statements are not robot-specific [7]. Instead,
a great deal of robot programming has to do with initialization, logic testing and
branching, communication, and so on. For this reason, a trend might develop to move
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386 Chapter 12 Robot Programming Languages and Systems

away from developing special languages for robot programming, and move toward
developing extensions to general languages, as in categories 2 and 3 above.

Task-Level Programming Languages

The third level of robot programming methodology is embodied in task-level pro-
gramming languages. These languages allow the user to command desired subgoals
of the task directly, rather than specify the details of every action the robot is to take.
In such a system, the user is able to include instructions in the application program at
a significantly higher level than in an explicit robot programming language. A task-
level robot programming system must have the ability to perform many planning
tasks automatically. For example, if an instruction to “grasp the bolt” is issued, the
system must plan a path of the manipulator that avoids collision with any surround-
ing obstacles, must automatically choose a good grasp location on the bolt, and must
grasp it. In contrast, in an explicit robot programming language, all these choices
must be made by the programmer.

The border between explicit robot programming languages and task-level
programming languages is quite distinct. Incremental advances are being made
to explicit robot programming languages to help to ease programming, but these
enhancements cannot be counted as components of a task-level programming
system. True task-level programming of manipulators does not yet exist, but it has
been an active topic of research [9, 10], and continues as a research topic today.

12.3 A SAMPLE APPLICATION

Figure 12.2 shows an automated workcell that completes a small subassembly in
a hypothetical manufacturing process. The workcell consists of a conveyor under
computer control that delivers a workpiece; a camera connected to a vision system,
used to locate the workpiece on the conveyor; an industrial robot (a PUMA 560 is
portrayed) equipped with a force-sensing wrist; a small feeder located on the work
surface that supplies another part to the manipulator; a computer-controlled press
that can be loaded and unloaded by the robot; and a pallet upon which the robot
places finished assemblies.

The entire process is controlled by the manipulator’s controller in a sequence,
as follows:

1. The conveyor is signaled to start; it is stopped when the vision system reports
that a bracket has been detected on the conveyor.

2. The vision system judges the bracket’s position and orientation on the conveyor
and inspects the bracket for defects, such as the wrong number of holes.

3. Using the output of the vision system, the manipulator grasps the bracket with
a specified force. The distance between the fingertips is checked to ensure that
the bracket has been properly grasped. If it has not, the robot moves out of the
way, and the vision task is repeated.

4. The bracket is placed in the fixture on the work surface. At this point, the con-
veyor can be signaled to start again for the next bracket—that is, steps 1 and 2
can begin in parallel with the following steps.

5. A pin is picked from the feeder and inserted partway into a tapered hole in the
bracket. Force control is used to perform this insertion and to perform simple
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FIGURE 12.2: An automated workcell containing an industrial robot.

checks on its completion. (If the pin feeder is empty, an operator is notified and
the manipulator waits until commanded to resume by the operator.)

6. The bracket–pin assembly is grasped by the robot and placed in the press.
7. The press is commanded to actuate, and it presses the pin the rest of the way

into the bracket. The press signals that it has completed, and the bracket is
placed back into the fixture for a final inspection.

8. By force sensing, the assembly is checked for proper insertion of the pin. The
manipulator senses the reaction force when it presses sideways on the pin, and
can do several checks to discover how far the pin protrudes from the bracket.

9. If the assembly is judged to be good, the robot places the finished part into the
next available pallet location. If the pallet is full, the operator is signaled. If the
assembly is bad, it is dropped into the trash bin.

10. Once Step 2 (started earlier in parallel) is complete, go to Step 3.

This is an example of a task that is possible for today’s industrial robots. It
should be clear that the definition of such a process through “teach by showing” tech-
niques is probably not feasible. For example, in dealing with pallets, it is laborious
to have to teach all the pallet compartment locations; it is much preferable to teach
only the corner location then compute the others from knowledge of the dimensions
of the pallet. Further, specifying interprocess signaling and setting up parallelism
by using a typical teach pendant or a menu-style interface is usually not possible at
all. This kind of application necessitates a robot programming-language approach
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to process description (see Exercise 12.5). On the other hand, this application is too
complex for any existing task-level languages to deal with directly. It is typical of
the many applications that must be addressed with an explicit robot programming
approach. We will keep this sample application in mind as we discuss features of
robot programming languages.

12.4 REQUIREMENTS OF A ROBOT PROGRAMMING LANGUAGE

World Modeling

Manipulation programs must, by definition, involve moving objects in three-
dimensional space, so it is clear that any robot programming language needs a
means of describing such actions. The most common element of robot programming
languages is the existence of special geometric types. For example, types are
introduced to represent joint-angle sets, Cartesian positions, orientations, and
frames. Predefined operators that can manipulate these types often are available.
The “standard frames” introduced in Chapter 3 might serve as a possible model of
the world: All motions are described as tool frame relative to station frame, with
goal frames being constructed from arbitrary expressions involving geometric types.

Given a robot programming environment that supports geometric types, the
robot and other machines, parts, and fixtures can be modeled by defining named vari-
ables associated with each object of interest. Figure 12.3 shows part of our example
workcell with frames attached in task-relevant locations. Each of these frames would
be represented with a variable of type “frame” in the robot program.

z

y

y
z

z

y

x

x
x

{Table}

{Fixture}

{Pin-grasp} {Feeder}

y

x

FIGURE 12.3: Often, a workcell is modeled simply as a set of frames attached to rele-
vant objects.
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In many robot programming languages, this ability to define named variables
of various geometric types and refer to them in the program forms the basis of the
world model. Note that the physical shapes of the objects are not part of such a world
model, and neither are surfaces, volumes, masses, or other properties. The extent to
which objects in the world are modeled is one of the basic design decisions made
when designing a robot programming system. Most present-day systems support only
the style just described.

Some world-modeling systems allow the notion of affixments between named
objects [3]—that is, the system can be notified that two or more named objects have
become “affixed”; from then on, if one object is explicitly moved with a language
statement, then any objects affixed to it are moved with it. Thus, in our applica-
tion, once the pin has been inserted into the hole in the bracket, the system would
be notified (via a language statement) that these two objects have become affixed.
Subsequent motions of the bracket (that is, changes to the value of the frame vari-
able “bracket”) would cause the value stored for variable “pin” to be updated along
with it.

Ideally, a world-modeling system would include much more information about
the objects with which the manipulator has to deal and about the manipulator itself.
For example, consider a system in which objects are described by CAD-style mod-
els that represent the spatial shape of an object by giving definitions of its edges,
surfaces, or volume. With such data available to the system, it begins to become pos-
sible to implement many of the features of a task-level programming system. These
possibilities will be discussed further in Chapter 13.

Motion Specification

A very basic function of a robot programming language is to allow the description
of desired motions of the robot. Through the use of motion statements in the lan-
guage, the user interfaces to path planners and generators of the style described in
Chapter 7. Motion statements allow the user to specify via points, the goal point, and
whether to use joint-interpolated motion or Cartesian straight-line motion. Addi-
tionally, the user might have control over the speed or duration of a motion.

To illustrate various syntaxes for motion primitives, we will consider the follow-
ing example manipulator motions: (1) move to position “goal1,” then (2) move in a
straight line to position “goal2,” then (3) move without stopping through “via1” and
come to rest at “goal3.” Assuming all of these path points had already been taught
or described textually, this program segment would be written as follows:

In VAL II,

move goal1
moves goal2
move via1
move goal3

In AL (here controlling the manipulator “garm”),

move garm to goal1;
move garm to goal2 linearly;
move garm to goal3 via via1;
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390 Chapter 12 Robot Programming Languages and Systems

Most languages have similar syntax for simple motion statements like these.
Differences in the basic motion primitives from one robot programming language to
another become more apparent if we consider features such as the following:

1. the ability to do math on such structured types as frames, vectors, and rotation
matrices;

2. the ability to describe geometric entities like frames in several different
convenient representations, along with the ability to convert between
representations;

3. the ability to give constraints on the duration or velocity of a particular move;
for example, many systems allow the user to set the speed to a fraction of
maximum, but fewer allow the user to specify a desired duration or a desired
maximum joint velocity directly;

4. the ability to specify goals relative to various frames, including frames defined
by the user and frames in motion (on a conveyor, for example).

Flow of Execution

As in more conventional computer programming languages, a robot programming
system allows the user to specify the flow of execution—that is, concepts such as
testing and branching, looping, calls to subroutines, and even interrupts are generally
found in robot programming languages.

More so than in many computer applications, parallel processing is generally
important in automated workcell applications. First of all, very often two or more
robots are used in a single workcell, and work simultaneously to reduce the cycle
time of the process. Even in single-robot applications, such as the one shown in
Fig. 12.2, other workcell equipment must be controlled by the robot controller in a
parallel fashion. Hence, signal and wait primitives are often found in robot program-
ming languages, and occasionally more sophisticated parallel-execution constructs
are provided [3].

Another frequent occurrence is the need to monitor various processes with
some kind of sensor. Then, either by interrupt or through polling, the robot sys-
tem must be able to respond to certain events detected by the sensors. The abil-
ity to specify such event monitors easily is afforded by some robot programming
languages [2, 3].

Programming Environment

As with any computer languages, a good programming environment fosters pro-
grammer productivity. Manipulator programming is difficult and tends to be very
interactive, with a lot of trial and error. If the user were forced to continually repeat
the “edit-compile-run” cycle of compiled languages, productivity would be low.
Therefore, most robot programming languages are now interpreted, so that individ-
ual language statements can be run one at a time during program development and
debugging. Many of the language statements cause motion of a physical device, so
the amount of time required to interpret the language statements is insignificant.
Typical programming support, such as text editors, debuggers, and a file system, are
also required.
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Sensor Integration

An extremely important part of robot programming has to do with interaction with
sensors. The system should have, at a minimum, the capability to query touch and
force sensors, and to use the response in if-then-else constructs. The ability to specify
event monitors to watch for transitions on such sensors in a background mode is also
very useful.

Integration with a vision system allows the vision system to send the manip-
ulator system the coordinates of an object of interest. For example, in our sample
application, a vision system locates the brackets on the conveyor belt and returns to
the manipulator controller their position and orientation relative to the camera. The
camera’s frame is known relative to the station frame, so a desired goal frame for the
manipulator can be computed from this information.

Some sensors could be part of other equipment in the workcell; for example,
some robot controllers can use input from a sensor attached to a conveyor belt so
the manipulator can track the belt’s motion and acquire objects from the belt as it
moves [2].

The interface to force-control capabilities, as discussed in Chapter 9, comes
through special language statements that allow the user to specify force strategies
[3]. Such force-control strategies are by necessity an integrated part of the manipu-
lator control system: The robot programming language simply serves as an interface
to those capabilities. Programming robots that make use of active force control might
require other special features, such as the ability to display force data collected during
a constrained motion [3].

In systems that support active force control, the description of the desired
force application could become part of the motion specification. The AL language
describes active force control in the motion primitives by specifying six components
of stiffness (three translational and three rotational) and a bias force. In this way,
the manipulator’s apparent stiffness is programmable. To apply a force, usually the
stiffness is set to zero in that direction and a bias force is specified—for example,

move garm to goal
with stiffness=(80, 80, 0, 100, 100, 100)
with force=20*ounces along zhat;

12.5 PROBLEMS PECULIAR TO ROBOT PROGRAMMING LANGUAGES

Advances in recent years have helped, but programming robots is still difficult. Robot
programming shares all the problems of conventional computer programming, plus
some additional difficulties caused by effects of the physical world [12].

Internal World Model versus External Reality

A central feature of a robot programming system is the world model that is main-
tained internally in the computer. Even when this model is quite simple, there are
ample difficulties in assuring that it matches the physical reality that it attempts to
model. Discrepancies between internal model and external reality result in poor or
failed grasping of objects, collisions, and a host of more subtle problems.

This correspondence between internal model and the external world must be
established for the program’s initial state, and must be maintained throughout its
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execution. During initial programming or debugging, it is generally up to the user to
suffer the burden of ensuring that the state represented in the program corresponds
to the physical state of the workcell. Unlike more conventional programming, where
only internal variables need to be saved and restored to reestablish a former situa-
tion, physical objects must usually be repositioned, in robot programming.

Besides the uncertainty inherent in each object’s position, the manipulator
itself is limited to a certain degree of accuracy. Very often, steps in an assembly
will require the manipulator to make motions requiring greater precision than it
is capable of. A common example of this is inserting a pin into a hole where the
clearance is an order of magnitude less than the positional accuracy of the manipu-
lator. To further complicate matters, the manipulator’s accuracy usually varies over
its workspace.

In dealing with those objects whose locations are not known exactly, it is essen-
tial to somehow refine the positional information. This can sometimes be done with
sensors (e.g., vision, touch) or by using appropriate force strategies for constrained
motions.

During debugging of manipulator programs, it is very useful to be able to mod-
ify the program, then back up and try a procedure again. Backing up entails restoring
the manipulator and objects being manipulated to a former state. However, in work-
ing with physical objects, it is not always easy, or even possible, to undo an action.
Some examples are the operations of painting, riveting, drilling, or welding, which
cause a physical modification of the objects being manipulated. It might therefore
be necessary for the user to get a new copy of the object to replace the old, modified
one. Further, it is likely that some of the operations just prior to the one being retried
will also need to be repeated to establish the proper state required before the desired
operation can be successfully retried.

Context Sensitivity

Bottom-up programming is a standard approach to writing a large computer program
in which one develops small, low-level pieces of a program then puts them together
into larger pieces, eventually attaining a completed program. For this method to
work, it is essential that the small pieces be relatively insensitive to the language
statements that precede them and that there be no assumptions concerning the con-
text in which these program pieces execute. For manipulator programming, this is
often not the case; code that worked reliably when tested in isolation frequently fails
when placed in the context of the larger program. These problems generally arise
from dependencies on manipulator configuration and speed of motions.

Manipulator programs can be highly sensitive to initial conditions—for exam-
ple, the initial manipulator position. In motion trajectories, the starting position will
influence the trajectory that will be used for the motion. The initial manipulator
position might also influence the velocity with which the arm will be moving during
some critical part of the motion. For example, these statements are true for manip-
ulators that follow the cubic-spline joint-space paths studied in Chapter 7. These
effects can sometimes be dealt with by proper programming care, but often such
problems do not arise until after the initial language statements have been debugged
in isolation, and are then joined with statements preceding them.
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Because of insufficient manipulator accuracy, a program segment written to
perform an operation at one location is likely to need to be tuned (i.e., positions
retaught and the like) to make it work at a different location. Changes in location
within the workcell result in changes in the manipulator’s configuration in reaching
goal locations. Such attempts at relocating manipulator motions within the workcell
test the accuracy of the manipulator kinematics and servo system, and problems fre-
quently arise. Such relocation could cause a change in the manipulator’s kinematic
configuration—for example, from left shoulder to right shoulder, or from elbow up
to elbow down. Moreover, these changes in configuration could cause large arm
motions during what had previously been a short, simple motion.

The nature of the spatial shape of trajectories is likely to change as paths are
located in different portions of the manipulator’s workspace. This is particularly true
of joint-space trajectory methods, but use of Cartesian-path schemes can also lead
to problems when singularities are nearby.

When testing a manipulator motion for the first time, it often is wise to have
the manipulator move slowly. This allows the user a chance to stop the motion if it
appears to be about to cause a collision. It also allows the user to inspect the motion
closely. After the motion has undergone some initial debugging at a slower speed, it
is then desirable to increase motion speeds. Doing so might cause some aspects of the
motion to change. Limitations in most manipulator control systems cause increased
servo errors, which are to be expected if the quicker trajectory is followed. Also, in
force-control situations involving contact with the environment, speed changes can
completely change the force strategies required for success.

The manipulator’s configuration also affects the delicacy and accuracy of the
forces that can be applied with it. This is a function of how well conditioned the Jaco-
bian of the manipulator is at a certain configuration, something generally difficult to
consider when developing robot programs.

Error Recovery

Another direct consequence of working with the physical world is that objects
might not be exactly where they should be and, hence, motions that deal with them
could fail. Part of manipulator programming involves attempting to take this into
account and making assembly operations as robust as possible. Even so, errors are
likely, and an important aspect of manipulator programming is how to recover from
these errors.

Almost any motion statement in the user’s program can fail, sometimes for a
variety of reasons. Some of the more common causes are objects shifting or drop-
ping out of the hand, an object missing from where it should be, jamming during an
insertion, and not being able to locate a hole.

The first problem that arises for error recovery is identifying that an error has
indeed occurred. Because robots generally have quite limited sensing and reasoning
capabilities, error detection is often difficult. In order to detect an error, a robot pro-
gram must contain some type of explicit test. This test might involve checking the
manipulator’s position to see that it lies in the proper range; for example, when per-
forming an insertion, lack of change in position might indicate jamming, or too much
change might indicate that the hole was missed entirely or the object has slipped out
of the hand. If the manipulator system has some type of visual capabilities, then it
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might take a picture and check for the presence or absence of an object and, if the
object is present, report its location. Other checks might involve force, such as weigh-
ing the load being carried to check that the object is still there and has not been
dropped, or checking that a contact force remains within certain bounds during a
motion.

Every motion statement in the program might fail, so these explicit checks can
be quite cumbersome and can take up more space than the rest of the program.
Attempting to deal with all possible errors is extremely difficult; usually, just the
few statements that seem most likely to fail are checked. The process of predicting
which portions of a robot application program are likely to fail is one that requires a
certain amount of interaction and partial testing with the robot during the program-
development stage.

Once an error has been detected, an attempt can be made to recover from
it. This can be done totally by the manipulator under program control, or it might
involve manual intervention by the user, or some combination of the two. In any
event, the recovery attempt could in turn result in new errors. It is easy to see how
code to recover from errors can become the major part of the manipulator program.

The use of parallelism in manipulator programs can further complicate recov-
ery from errors. When several processes are running concurrently and one causes an
error to occur, it could affect other processes. In many cases, it will be possible to
back up the offending process, while allowing the others to continue. At other times,
it will be necessary to reset several or all of the running processes.
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EXERCISES

12.1 [15] Write a robot program (in a language of your choice) to pick a block up from
location A and place it in location B.

12.2 [20] Describe tying your shoelace in simple English commands that might form
the basis of a robot program.

12.3 [32] Design the syntax of a new robot programming language. Include ways to
give duration or speeds to motion trajectories, make I/O statements to peripherals,
give commands to control the gripper, and produce force-sensing (i.e., guarded
move) commands. You can skip force control and parallelism (to be covered in
Exercise 12.4).

12.4 [28] Extend the specification of the new robot programming language that you
started in Exercise 12.3 by adding force-control syntax and syntax for parallelism.

12.5 [38] Write a program in a commercially available robot programming language to
perform the application outlined in Section 12.3. Make any reasonable assump-
tions concerning I/O connections and other details.

12.6 [28] Using any robot language, write a general routine for unloading an arbitrarily
sized pallet. The routine should keep track of indexing through the pallet, and
signal a human operator when the pallet is empty. Assume the parts are unloaded
onto a conveyor belt.

12.7 [35] Using any capable robot language, write a general routine for unloading an
arbitrarily sized source pallet and loading an arbitrarily sized destination pallet.
The routine should keep track of indexing through the pallets, and signal a human
operator when the source pallet is empty and when the destination pallet is full.

12.8 [35] Using any capable robot programming language, write a program that
employs force control to fill a cigarette box with 20 cigarettes. Assume that the
manipulator has an accuracy of about 0.25 inch, so force control should be used
for many operations. The cigarettes are presented on a conveyor belt, and a
vision system returns their coordinates.

12.9 [35] Using any capable robot programming language, write a program to
assemble the hand-held portion of a standard telephone. The six components
(handle, microphone, speaker, two caps, and cord) arrive in a kit, that is, a special
pallet holding one of each kind of part. Assume there is a fixture into which
the handle can be placed that holds it. Make any other reasonable assumptions
needed.

12.10 [33] Write a robot program that uses two manipulators. One, called GARM, has
a special end-effector designed to hold a wine bottle. The other arm, BARM, will
hold a wineglass and is equipped with a force-sensing wrist that can be used to
signal GARM to stop pouring when it senses the glass is full.

12.11 [17] In addition to those shown in Fig. 12.3, what frames are needed for the appli-
cation of Section 12.3?

12.12 [15] Since manipulator control system limitations typically cause greater servo
errors with increasing trajectory speed, a robot often has to slow for via points
in a path. In general, the closer the trajectory is to maintaining constant velocity
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through the via point, the farther it is from the point in space. What options or
parameters might you provide for the operator for adjusting this balance?

12.13 [20] Write a robot program (in a language of your choice) to poll an input detecting
the presence of a part and when the input goes HIGH to pick up the part from
location A and place it in location B.

12.14 [25] Using any capable robot language, write a general routine for picking up a
part from a table, the coordinates being provided by machine vision, and placing
it in a fixture. The part will either be face up or face down on the table, but only
one orientation is possible for placing it in the fixture.

12.15 [20] For a robotic system to track an object along an unpredictable path, how
might the motion commands be different from those provided as examples in
Section 12.4? Assume that the object’s Cartesian coordinates are available in
real time.

PROGRAMMING EXERCISE (PART 12)

Create a user interface to the other programs you have developed by writing a few sub-
routines in Pascal. Once these routines are defined, a “user” could write a Pascal program
that contains calls to these routines to perform a 2-D robot application in simulation.

Define primitives that allow the user to set station and tool frames—namely,

setstation(Sre1B:vec3);

settool(Tre1W:vec3);

where “Sre1B” gives the station frame relative to the base frame of the robot, and
“Tre1W” defines the tool frame relative to the wrist frame of the manipulator. Define
the motion primitives

moveto(goal:vec3);

moveby(increment:vec3);

where “goal” is a specification of the goal frame relative to the station frame and
“increment” is a specification of a goal frame relative to the current tool frame. Allow
multisegment paths to be described when the user first calls the “pathmode” function,
then specifies motions to via points, and finally says “runpath”—for example,

pathmode; (* enter path mode *)

moveto(goal1);

moveto(goal2);

runpath; (* execute the path without stopping at goal1 *)

Write a simple “application” program, and have your system print the location of the arm
every n seconds.
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C H A P T E R 13

Off-Line Programming Systems

13.1 INTRODUCTION
13.2 CENTRAL ISSUES IN OLP SYSTEMS
13.3 THE ‘PILOT’ SIMULATOR
13.4 AUTOMATING SUBTASKS IN OLP SYSTEMS

13.1 INTRODUCTION

We define an off-line programming (OLP) system as a robot programming language
that has been sufficiently extended, generally by means of computer graphics, that
the development of robot programs can take place without access to the robot itself.1

Off-line programming systems are important both as aids in programming present-
day industrial automation and as platforms for robotics research. Numerous issues
must be considered in the design of such systems. In this chapter, first a discussion of
these issues will be presented [1], and then a closer look at one such system [2].

Over the past 20 years, the growth of the industrial robot market has not been
as rapid as once was predicted. One primary reason for this is that robots are still
too difficult to use. A great deal of time and expertise is required to install a robot
in a particular application and bring the system to production readiness. For vari-
ous reasons, this problem is more severe in some applications than in others; hence,
we see certain application areas (e.g., spot welding and spray painting) being auto-
mated with robots much sooner than other application domains (e.g., assembly). It
seems that lack of sufficiently trained robot-system implementors is limiting growth
in some, if not all, areas of application. At some manufacturing companies, man-
agement encourages the use of robots to an extent greater than that realizable by
applications engineers. Also, a large percentage of the robots delivered are being
used in ways that do not take full advantage of their capabilities. These symptoms
indicate that current industrial robots are not easy enough to use to allow successful
installation and programming in a timely manner.

There are many factors that make robot programming a difficult task. First,
it is intrinsically related to general computer programming, and so shares in many
of the problems encountered in that field; but the programming of robots, or of
any programmable machine, has particular problems that make the development of
production-ready software even more difficult. As we saw in the previous chapter,

1Chapter 13 is an edited version of two papers: one reprinted with permission from International Sym-
posium of Robotics Research, R. Bolles and B. Roth (editors), 1988 (ref [1]); the other from Robotics: The
Algorithmic Perspective, P. Agarwal et al. (editors), 1998 (ref [2]).

397
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most of these special problems arise from the fact that a robot manipulator inter-
acts with its physical environment [3]. Even simple programming systems maintain
a “world model” of this physical environment in the form of locations of objects
and have “knowledge” about presence and absence of various objects encoded in
the program strategies. During the development of a robot program (and especially
later during production use), it is necessary to keep the internal model maintained
by the programming system in correspondence with the actual state of the robot’s
environment. Interactive debugging of programs with a manipulator requires fre-
quent manual resetting of the state of the robot’s environment—parts, tools, and so
forth must be moved back to their initial locations. Such state resetting becomes
especially difficult (and sometimes costly) when the robot performs a irreversible
operation on one or more parts (e.g., drilling or routing). The most spectacular effect
of the presence of the physical environment is when a program bug manifests itself
in some unintended irreversible operation on parts, on tools, or even on the manip-
ulator itself.

Although difficulties exist in maintaining an accurate internal model of the
manipulator’s environment, there seems no question that great benefits result from
doing so. Whole areas of sensor research, perhaps most notably computer vision,
focus on developing techniques by which world models can be verified, corrected,
or discovered. Clearly, in order to apply any computational algorithm to the robot
command-generation problem, the algorithm needs access to a model of the robot
and its surroundings.

In the development of programming systems for robots, advances in the power
of programming techniques seem directly tied to the sophistication of the internal
model referenced by the programming language. Early joint-space “teach by show-
ing” robot systems employed a limited world model, and there were very limited
ways in which the system could aid the programmer in accomplishing a task. Slightly
more sophisticated robot controllers included kinematic models, so that the system
could at least aid the user in moving the joints so as to accomplish Cartesian motions.
Robot programming languages (RPLs) evolved to support many different data types
and operations, which the programmer may use as needed to model attributes of the
environment and compute actions for the robot. Some RPLs support such world-
modeling primitives as affixments, data types for forces and moments, and other
features [4].

The robot programming languages of today might be called “explicit program-
ming languages,” in that every action that the system takes must be programmed
by the application engineer. At the other end of the spectrum are the so-called
task-level-programming (TLP) systems, in which the programmer may state such
high-level goals as “insert the bolt” or perhaps even “build the toaster oven.” These
systems use techniques from artificial-intelligence research to generate motion and
strategy plans automatically. However, task-level languages this sophisticated do
not yet exist; various pieces of such systems are currently under development by
researchers [5]. Task-level programming systems will require a very complete model
of the robot and its environment to perform automated planning operations.

Although this chapter focuses to some extent on the particular problem of
robot programming, the notion of an OLP system extends to any programmable
device on the factory floor. An argument commonly raised in favor is that an OLP
system will not tie up production equipment when it needs to be reprogrammed;
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hence, automated factories can stay in production mode a greater percentage of
the time. They also serve as a natural vehicle to tie computer-aided design (CAD)
data bases used in the design phase of a product’s development to the actual
manufacturing of the product. In some applications, this direct use of CAD design
data can dramatically reduce the programming time required for the manufacturing
machinery.

Off-line programming of robots offers other potential benefits just beginning
to be appreciated by industrial robot users. We have discussed some of the prob-
lems associated with robot programming, and most have to do with the fact that an
external, physical workcell is being manipulated by the robot program. This makes
backing up to try different strategies tedious. Programming of robots in simulation
offers a way of keeping the bulk of the programming work strictly internal to a com-
puter until the application is nearly complete. Under this approach, many of the
problems peculiar to robot programming tend to diminish.

Off-line programming systems should serve as the natural growth path from
explicit programming systems to task-level-programming systems. The simplest OLP
system is merely a graphical extension to a robot programming language, but from
there it can be extended into a task-level-programming system. This gradual exten-
sion is accomplished by providing automated solutions to various subtasks (as these
solutions become available) and letting the programmer use them to explore options
in the simulated environment. Until we discover how to build task-level systems, the
user must remain in the loop to evaluate automatically planned subtasks and guide
the development of the application program. If we take this view, an OLP system
serves as an important basis for research and development of task-level-planning
systems, and, indeed, in support of their work, many researchers have developed
various components of an OLP system (e.g., 3-D models and graphic display, lan-
guage postprocessors). Hence, OLP systems should be a useful tool in research as
well as an aid in current industrial practice.

13.2 CENTRAL ISSUES IN OLP SYSTEMS

This section raises many of the issues that must be considered in the design of an OLP
system. The collection of topics discussed will help to set the scope of the definition
of an OLP system.
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User Interface

A major motivation for developing an OLP system is to create an environment that
makes programming manipulators easier, so the user interface is of crucial impor-
tance. However, another major motivation is to remove reliance on use of the physi-
cal equipment during programming. Upon initial consideration, these two goals seem
to conflict: Robots are hard enough to program when you can see them, so how can
it be easier without the presence of physical device? This question touches upon the
essence of the OLP design problem.

Manufacturers of industrial robots have learned that the RPLs they provide
with their robots cannot be utilized successfully by a large percentage of manufac-
turing personnel. For this and other historical reasons, many industrial robots are
provided with a two-level interface [6], one for programmers, and one for nonpro-
grammers. Nonprogrammers utilize a teach pendant and interact directly with the
robot to develop robot programs. Programmers write code in the RPL and interact
with the robot in order to teach robot work points and to debug program flow. In
general, these two approaches to program development trade off ease of use against
flexibility.

When viewed as an extension of a RPL, an OLP system by nature contains an
RPL as a subset of its user interface. This RPL should provide features that have
already been discovered to be valuable in robot programming systems. For example,
for use as an RPL, interactive languages are much more productive than compiled
languages, which force the user to go through the “edit–compile–run” cycle for each
program modification.

The language portion of the user interface inherits much from “traditional”
RPLs; it is the lower-level (i.e., easier-to-use) interface that must be carefully consid-
ered in an OLP system. A central component of this interface is a computer-graphic
view of the robot being programmed and of its environment. Using a pointing device
such as a mouse, the user can indicate various locations or objects on the graphics
screen. The design of the user interface addresses exactly how the user interacts with
the screen to specify a robot program. The same pointing device can indicate items
in a “menu” in order to specify modes or invoke various functions.

A central primitive is that for teaching a robot a work point or “frame” that has
six degrees of freedom by means of interaction with the graphics screen. The avail-
ability of 3-D models of fixtures and workpieces in the OLP system often makes this
task quite easy. The interface provides the user with the means to indicate locations
on surfaces, allowing the orientation of the frame to take on a local surface nor-
mal, and then provides methods for offsetting, reorienting, and so on. Depending on
the specifics of the application, such tasks are quite easily specified via the graphics
window into the simulated world.
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A well-designed user interface should enable nonprogrammers to accomplish
many applications from start to finish. In addition, frames and motion sequences
“taught” by nonprogrammers should be able to be translated by the OLP system
into textual RPL statements. These simple programs can be maintained and embel-
lished in RPL form by more experienced programmers. For programmers, the RPL
availability allows arbitrary code development for more complex applications.

3-D Modeling

A central element in OLP systems is the use of graphic depictions of the simulated
robot and its workcell. This requires the robot and all fixtures, parts, and tools in the
workcell to be modeled as three-dimensional objects. To speed up program devel-
opment, it is desirable to use any CAD models of parts or tooling that are directly
available from the CAD system on which the original design was done. As CAD
systems become more and more prevalent in industry, it becomes more and more
likely that this kind of geometric data will be readily available. Because of the strong
desire for this kind of CAD integration from design to production, it makes sense
for an OLP system either to contain a CAD modeling subsystem or to be, itself,
a part of a CAD design system. If an OLP system is to be a stand-alone system,
it must have appropriate interfaces to transfer models to and from external CAD
systems; however, even a stand-alone OLP system should have at least a simple local
CAD facility for quickly creating models of noncritical workcell items, or for adding
robot-specific data to imported CAD models.

OLP systems generally require multiple representations of spatial shapes. For
many operations, an exact analytic description of the surface or volume is generally
present; yet, in order to benefit from display technology, another representation is
often needed. Current technology is well-suited to systems in which the underlying
display primitive is a planar polygon; hence, although an object shape might be well
represented by a smooth surface, practical display (especially for animation) requires
a faceted representation. User-interface graphical actions, such as pointing to a spot
on a surface, should internally act so as to specify a point on the true surface, even
if, graphically, the user sees a depiction of the faceted model.

An important use of the three-dimensional geometry of the object models is in
automatic collision detection—that is, when any collisions occur between objects in
the simulated environment, the OLP system should automatically warn the user and
indicate exactly where the collision takes place. Applications such as assembly may
involve many desired “collisions,” so it is necessary to be able to inform the system
that collisions between certain objects are acceptable. It is also valuable to be able to
generate a collision warning when objects pass within a specified tolerance of a true
collision. Currently, the exact collision-detection problem for general 3-D solids is
difficult, but collision detection for faceted models is quite practical.

Kinematic Emulation

A central component in maintaining the validity of the simulated world is the faithful
emulation of the geometrical aspects of each simulated manipulator. With regard
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to inverse kinematics, the OLP system can interface to the robot controller in two
distinct ways. First, the OLP system could replace the inverse kinematics of the robot
controller and always communicate robot positions in mechanism joint space. The
second choice is to communicate Cartesian locations to the robot controller, then
let the controller use the inverse kinematics supplied by the manufacturer to solve
for robot configurations. The second choice is almost always preferable, especially as
manufacturers begin to build arm signature style calibration into their robots. These
calibration techniques customize the inverse kinematics for each individual robot. In
this case, it becomes desirable to communicate information at the Cartesian level to
robot controllers.

These considerations generally mean that the forward and inverse kinematic
functions used by the simulator must reflect the nominal functions used in the robot
controller supplied by the manufacturer of the robot. There are several details of
the inverse-kinematic function specified by the manufacturer that must be emulated
by the simulator software. Any inverse-kinematic algorithm must make arbitrary
choices in order to resolve singularities. For example, when joint 5 of a PUMA
560 robot is at its zero location, axes 4 and 6 line up, and a singular condition
exists. The inverse-kinematic function in the robot controller can solve for the sum
of joint angles 4 and 6, but then must use an arbitrary rule to choose individual
values for joints 4 and 6. The OLP system must emulate whatever algorithm is
used. Choosing the nearest solution when many alternate solutions exist provides
another example. The simulator must use the same algorithm as the controller in
order to avoid potentially catastrophic errors in simulating the actual manipulator.
A helpful feature occasionally found in robot controllers is the ability to command
a Cartesian goal, and specify which of the possible solutions the manipulator should
use. The existence of this feature eliminates the requirement that the simulator
emulate the solution-choice algorithm; the OLP system can simply force its choice
on the controller.

Path-Planning Emulation

In addition to kinematic emulation for static positioning of the manipulator, an
OLP system should accurately emulate the path taken by the manipulator in
moving through space. Again, the central problem is that the OLP system needs to
simulate the algorithms in the employed robot controller, and such path-planning
and path-execution algorithms vary considerably from one robot manufacturer
to another. Simulation of the spatial shape of the path taken is important for
detection of collisions between the robot and its environment. Simulation of the
temporal aspects of the trajectory are important for predicting the cycle times of
applications. When a robot is operating in a moving environment (e.g., near another
robot), accurate simulation of the temporal attributes of motion is necessary to
predict collisions accurately and, in some cases, to predict communication or
synchronization problems, such as deadlock.

Dynamic Emulation

Simulated motion of manipulators can neglect dynamic attributes if the OLP system
does a good job of emulating the trajectory-planning algorithm of the controller,
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and if the actual robot follows desired trajectories with negligible errors. However,
at high speed or under heavy loading conditions, trajectory-tracking errors can
become important. Simulation of these tracking errors necessitates both modeling
the dynamics of the manipulator and the objects that it moves, and emulating the
control algorithm used in the manipulator controller. Currently, practical problems
exist in obtaining sufficient information from the robot vendors to make this kind
of dynamic simulation of practical value, but, in some cases, dynamic simulation can
be pursued fruitfully.

Multiprocess Simulation

Some industrial applications involve two or more robots cooperating in the same
environment. Even single-robot workcells often contain a conveyor belt, a trans-
fer line, a vision system, or some other active device with which the robot must
interact. For this reason, it is important that an OLP system be able to simulate mul-
tiple moving devices and other activities that involve parallelism. As a basis for this
capability, the underlying language in which the system is implemented should be
a multiprocessing language. Such an environment makes it possible to write inde-
pendent robot-control programs for each of two or more robots in a single cell, then
simulate the action of the cell with the programs running concurrently. Adding sig-
nal and wait primitives to the language enables the robots to interact with each other
just as they might in the application being simulated.

Simulation of Sensors

Studies have shown that a large component of robot programs consists not of
motion statements, but rather of initialization, error-checking, I/O, and other kinds
of statements [7]. Hence, the ability of the OLP system to provide an environment
that allows simulation of complete applications (including interaction with sensors,
various I/O, and communication with other devices) becomes important. An OLP
system that supports simulation of sensors and multiprocessing not only can check
robot motions for feasibility, but also can verify the communication and synchro-
nization portion of the robot program.

Language Translation to Target System

An annoyance for current users of industrial robots (and of other programmable
automation) is that almost every supplier of such systems has invented a unique lan-
guage for programming its product. If an OLP system aspires to be universal in the
equipment it can handle, it must deal with the problem of translating to and from
several different languages. One choice for dealing with this problem is to choose
a single language to be used by the OLP system, then postprocess the language
in order to convert it into the format required by the target machine. An ability to
upload programs that already exist on the target machines and bring them into the
OLP system is also desirable.

Two potential benefits of OLP systems relate directly to the language-
translation topic. Most proponents of OLP systems note that having a single,
universal interface, one that enables users to program a variety of robots, solves
the problem of learning and dealing with several automation languages. A second
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benefit stems from economic considerations in future scenarios in which hundreds
or perhaps thousands of robots fill factories. The cost associated with a powerful
programming environment (such as a language and graphical interface) might
prohibit placing it at the site of each robot installation. Rather, it seems to make
economic sense to place a simple, “dumb,” and cheap controller with each robot,
and have it downloaded from a powerful, “intelligent” OLP system that is located
in an office environment. Hence, the general problem of translating an application
program from a powerful universal language to a simple language designed to
execute in a cheap processor becomes an important issue in OLP systems.

Workcell Calibration

An inevitable reality of a computer model of any real-world situation is that of inac-
curacy in the model. In order to make programs developed on an OLP system usable,
methods for workcell calibration must be an integral part of the system. The magni-
tude of this problem varies greatly with the application; this variability makes off-line
programming of some tasks much more feasible than that of others. If the majority
of the robot work points for an application must be retaught with the actual robot to
solve inaccuracy problems, OLP systems lose their effectiveness.

Many applications involve the frequent performance of actions relative to a
rigid object. Consider, for example, the task of drilling several hundred holes in a
bulkhead. The actual location of the bulkhead relative to the robot can be taught by
using the actual robot to take three measurements. From those data, the locations of
all the holes can be updated automatically if they are available in part coordinates
from a CAD system. In this situation, only these three points need be taught with
the robot, rather than hundreds. Most tasks involve this sort of “many operations
relative to a rigid object” paradigm—for example, PC-board component insertion,
routing, spot welding, arc welding, palletizing, painting, and deburring.

13.3 THE ‘PILOT’ SIMULATOR

In this section, we will consider one such off-line simulator system: the ‘Pilot’ system
developed by Adept Technology [8]. The Pilot system is actually a suite of three
closely related simulation systems; here, we look at the portion of Pilot (known as
“Pilot/Cell”) that is used to simulate an individual workcell in a factory. In particular,
this system is unusual in that it attempts to model several aspects of the physical
world, as a means of unburdening the programmer of the simulator. In this section,
we will discuss the “geometric algorithms” that are used to empower the simulator
to emulate certain aspects of physical reality.

The need for ease of use drives the need for the simulation system to behave
like the actual physical world. The more the simulator acts like the real world, the
simpler the user-interface paradigm becomes for the user, because the physical world
is the one with which we are all familiar. At the same time, trade-offs of ease against
computational speed and other factors have driven a design in which a particular
“slice” of reality is simulated, while many details are not.

Pilot is well-suited as a host for a variety of geometric algorithms. The need
to model various portions of the real world, together with the need to unburden
the user by automating frequent geometric computations, drives the need for such
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algorithms. Pilot provides the environment in which some advanced algorithms can
be brought to bear on real problems occurring in industry.

One decision made very early on in the design of the Pilot simulation sys-
tem was that the programming paradigm should be as close as possible to the way
the actual robot system would be programmed. Certain higher level planning and
optimization tools are provided, but it was deemed important to have the basic pro-
gramming interaction be similar to actual hardware systems. This decision has led the
product’s development down a path along which we find a genuine need for various
geometric algorithms. The algorithms needed range widely from extremely simple
to quite complex.

If a simulator is to be programmed as the physical system would be, then the
actions and reactions of the physical world must be modeled “automatically” by
the simulator. The goal is to free the user of the system from having to write any
“simulation-specific code.” As a simple example, if the robot gripper is commanded
to open, a grasped part should fall in response to gravity, and possibly should even
bounce and settle into a certain stable state. Forcing the user of the system to specify
these real-world actions would make the simulator fall short of its goal: being pro-
grammed just as the actual system is. Ultimate ease of use can be achieved only when
the simulated world “knows how” to behave like the real world without burdening
the user.

Most, if not all, commercial systems for simulating robots or other mechanisms
do not attempt to deal directly with this problem. Rather, they typically “allow”
the user (actually, force the user) to embed simulation-specific commands within the
program written to control the simulated device. A simple example would be
the following code sequence:

MOVE TO pick_part
CLOSE gripper
affix(gripper,part[i]);
MOVE TO place_part
OPEN gripper
unaffix(gripper,part[i]);

Here, the user has been forced to insert “affix” and “unaffix” commands, which
(respectively) cause the part to move with the gripper when grasped, and to stop
moving with it when released. If the simulator allows the robot to be programmed
in its native language, generally that language is not rich enough to support these
required “simulation-specific” commands. Hence, there is a need for a second set
of commands, possibly even with a different syntax, for dealing with interactions
with the real world. Such a scheme is inherently not programmed “just as the phys-
ical system is” and must inherently cause an increased programming burden for
the user.

From the preceding example, we see the first geometric algorithm that one finds
a need for: From the geometry of the gripper and the relative placements of parts,
figure out which part (if any) will be grasped when the gripper closes, and possibly
how the part will self-align within the gripper. In the case of Pilot, we solve the first
part of this problem with a simple algorithm. In limited cases, the “alignment action”
of the part in the gripper is computed, but, in general, such alignments need to be
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pretaught by the system’s user. Hence, Pilot has not reached the ultimate goal yet,
but has taken some steps in that direction.

Physical Modeling and Interactive Systems

In a simulation system, one always trades off complexity of the model in terms of
computation time against accuracy of the simulation. In the case of Pilot and its
intended goals, it is particularly important to keep the system fully interactive. This
has led to designing Pilot so that it can use various approximate models—for exam-
ple, the use of quasi-static approximations where a full dynamic model might be more
accurate. Although there appears to be a possibility that “full dynamic” models might
soon be applicable [9], given the current state of computer hardware, of dynamic
algorithms, and of the complexity of the CAD models that industrial users wish to
employ, we feel these trade-offs still need to be made.

Geometric Algorithms for Part Tumbling

In some feeding systems employed in industrial practice, parts tumble from some
form of infeed conveyor onto a presentation surface; computer vision is then used
to locate parts to be acquired by the robot. Designing such automation systems with
the aid of a simulator means that the simulator must be able to predict how parts
fall, bounce, and take on a stable orientation, or stable state.

Stable-State Probabilities

As reported in [10], an algorithm has been implemented that takes as input any geo-
metric shape (represented by a CAD model) and, for that shape, can compute the N

possible ways that it can rest stably on a horizontal surface. These are called the sta-
ble states of the part. Further, the algorithm uses a perturbed quasi-static approach
to estimate the probability associated with each of the N stable states. We have
performed physical experiments with sample parts in order to assess the resulting
accuracy of stable-state prediction.

In the physical experiments, eight stable states were observed for a particu-
lar test part. Using an Adept robot and vision system, we dropped this part more
than 26,000 times and recorded the resulting stable state, in order to compare our
stable-state prediction algorithm to reality. Table 13.1 shows the results for the test
part. These results are characteristic of our current algorithm: stable-state likelihood
prediction error typically ranges from 5% to 10%.
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TABLE 13.1: Predicted versus Actual Stable-State
Probabilities for the Test Part

Stable State Actual # % Actual % Predicted

1. FU 1871 7.03% 8.91%
2. FD 10,600 39.80% 44.29%
3. TP 648 2.43% 7.42%
4. BT 33 0.12% 8.19%
5. SR 6467 24.28% 15.90%
6. SL 6583 24.72% 15.29%
7. AR / 8. AL 428 1.61% 0.00%

Total 26,630 100% 100%

Adjusting Probabilities as a Function of Drop Height

Clearly, if a part is dropped from a gripper from a very small height (e.g., 1 mm)
above a surface, the probabilities of the various stable states differ from those which
occur when the part is dropped from higher than some critical height. In Pilot, we use
probabilities from the stable-state estimator algorithm when parts are dropped from
heights equal to or greater than the largest dimension of the part. For drop heights
below that value, probabilities are adjusted to take into account the initial orientation
of the part and the height of the drop. The adjustment is such that, as an infinitesimal
drop height is approached, the part remains in its initial orientation (assuming it is
a stable orientation). This is an important addition to the overall probability algo-
rithm, because it is typical for parts to be released a small distance above a support
surface.

Simulation of Bounce

Parts in Pilot are tagged with their coefficient of restitution; so are all surfaces on
which parts may be placed. The product of these two factors is used in a formula
for predicting how far the part will bounce when dropped. These details are
important, because they affect how parts scatter or clump in the simulation of some
feeding systems. When bouncing, parts are scattered radially according to a uniform
distribution. The distance of bounce (away from the initial contact point) is a
certain distribution function out to a maximum distance, which is computed as
a function of drop height (energy input) and the coefficients of restitution that
apply.

In Pilot, parts can bounce recursively from surface to surface in certain arrange-
ments. It is also possible to mark certain surfaces such that parts are not able to
bounce off them, but can only bounce within them. Entities known as bins in Pilot
have this property –parts can fall into them, but never bounce out.
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Simulation of Stacking and Tangling

As a simplification, parts in Pilot always rest on planar support surfaces. If parts
are tangled or stacked on one another, this is displayed as parts that are intersect-
ing each other (that is, the boolean intersection of their volumes would be non-
empty). This saves the enormous amount of computation that would be needed to
compute the various ways a part might be stacked or tangled with another part’s
geometry.

In Pilot, parts are tagged with a tangle factor. For example, something like a
marble would have a tangle factor of 0.0 because, when tumbled onto a support sur-
face, marbles tend never to stack or tangle, but rather tend to spread out on the
surface. On the other hand, parts like coiled springs might have a tangle factor near
1.0; they quite readily become entangled with one another. When a part falls and
bounces, a findspace algorithm runs, in which the part tries to bounce into an open
space on the surface. However, exactly “how hard it tries” to find an open space is
a function of its tangle factor. By adjustment of this coefficient, Pilot can simulate
parts that tumble and become entangled, more or less. Currently, there is no algo-
rithm for automatically computing the tangle factor from the part geometry—this is
an interesting open problem. Through the user interface, the Pilot user can set the
tangle factor to what seems appropriate.

Geometric Algorithms for Part Grasping

Much of the difficulty in programming and using actual robots has to do with the
details of teaching grasp locations on parts, and with the detailed design of grippers.
This is an area in which additional planning algorithms in a simulator system could
have a large impact. In this section, we will discuss the algorithms currently in place
in Pilot. The current approaches are quite simple, so this is an area of ongoing work.

Computing Which Part to Grasp

When a tool closes, or a suction end-effector actuates, Pilot applies a simple algo-
rithm to compute which part (if any) should become grasped by the robot. First, the
system figures out which support surface is immediately beneath the gripper. Then,
for all parts on that surface, it searches for each whose bounding box (for the current
stable state) contains the TCP (tool center point) of the gripper. If more than one
part satisfies this criterion, then it chooses the nearest among those which do.

Computation of Default Grasp Location

Pilot automatically assigns a grasp location for each stable orientation predicted by
the stable-state estimator previously described. The current algorithm is simplistic,



“runall”
2021/5/25
page 409

�

�

�

�

�

�

�

�

Section 13.3 The ‘Pilot’ Simulator 409

thus a graphical user interface is also provided so the user can edit and redefine these
grasp points. The current grasp algorithm is a function of the part’s bounding box and
the geometry of the gripper, which is assumed to be either a parallel-jaw gripper or
a suction cup. Along with computing a default grasp location for each stable state, a
default approach and depart height are also automatically computed.

Computation of Alignment of the Part During Grasp

In some important cases in industrial practice, the system designer counts on the fact
that, when the robot end-effector actuates, the captured part will align itself in some
way with surfaces of the end-effector. This effect can be important in removing small
misalignments in the presentation of parts to the robot.

A very real effect which needs to be simulated is that, with suction cup grippers,
it can be the case that, when suction is applied, the part is “lifted” up against the
suction cup in a way which significantly alters its orientation relative to the end-
effector. Pilot simulates this effect by piercing the part geometry with a vertical line
aligned with the center line of the suction cup. Whichever facet of the polygonal
part model is pierced is used in computing the orientation at grasp; the normal of
this facet becomes anti-aligned with the normal of the bottom of the suction cup. In
altering the part orientation, rotation about this piercing line is minimized (the part
does not spin about the axis of the suction cup when picked). Without simulation of
this effect, the simulator would be unable to depict realistically some pick-and-place
strategies employing suction grippers.

We have also implemented a planner that allows parts to rotate about the Z
axis when a parallel jaw gripper closes on them. This case is automatic only for a
simple case—in other situations, the user must teach the resulting alignment (i.e., we
are still waiting for a more nearly complete algorithm).

Geometric Algorithms for Part Pushing

One style of part pushing occurs between the jaws of a gripper, as mentioned in
the previous section. In current industrial practice, parts sometimes get pushed by
simple mechanisms. For example, after a part is presented by a bowl feeder, it might
be pushed by a linear actuator right into an assembly that has been brought into the
cell by a tray-conveyor system.

Pilot has support for simulating the pushing of parts: an entity called a push-
bar, which can be attached to a pneumatic cylinder or a leadscrew actuator in the
simulator. When the actuator moves the push-bar along a linear path, the leading
surface of the push-bar will move parts. In the future, it is planned that push-bars
will also be able to be added as guides along conveyors or placed anywhere that
requires that parts motion be affected by their presence. The current pushing is still
very simple, but it suffices for many real-world tasks.

Geometric Algorithms for Tray Conveyors

Pilot supports the simulation of tray-conveyor systems in which trays move along
tracks composed of straight-line and circular-section components. Placed along the
tracks at key locations can be gates, which pop up temporarily to block a tray when
so commanded. Additionally, sensors that detect a passing tray can be placed in the
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track at user-specified locations. Such conveyor systems are typical in many automa-
tion schemes.

Connecting Tray Conveyors and Sources and Sinks

Tray conveyors can be connected together to allow various styles of branching.
Where two conveyors “flow together,” a simple collision-avoidance scheme is
provided to cause trays from the spur conveyor to be subordinate to trays on the
main conveyor. Trays on the spur conveyor will wait whenever a collision would
occur. At “flow apart” connections, a device called a director is added to the main
conveyor, which can be used to control which direction a tray will take at the
intersection. Digital I/O lines connected to the simulated robot controller are used
to read sensors, activate gates, and activate directors.

At the ends of a tray conveyor are a source and a sink. Sources are set up by the
user to generate trays at certain statistical intervals. The trays generated could either
be empty or be preloaded with parts or fixtures. At the end of a tray conveyor, trays
(and their contents) disappear into sinks. Each time a tray enters a sink, its arrival
time and contents are recorded. These so-called sink records can then be replayed
through a source elsewhere in the system. Hence, a line of cells can be studied in the
simulator one cell at a time, by setting the source of cell N + 1 to the sink record
from cell N .

Pushing of Trays

Pushing is also implemented for trays: A push-bar can be used to push a tray off a
tray conveyor system and into a particular workcell. Likewise, trays can be pushed
onto a tray conveyor. The updating of various data structures when trays come off a
conveyor or onto one is an automatic part of the pushing code.

Geometric Algorithms for Sensors

Simulation of various sensor systems is required, so that the user will not be burdened
with the writing of code to emulate their behavior in the cell.

Proximity Sensors

Pilot supports the simulation of proximity sensors and other sensors. In the case of
proximity sensors, the user tags the device with its minimum and maximum range,
and with a threshold. If an object is within range and closer than the threshold, then
the sensor will detect it. To perform this computation in the simulated world, a line
segment is temporarily added to the world, one that stretches from minimum to max-
imum sensor range. Using a collision algorithm, the system computes the locations
at which this line segment intersects other CAD geometry. The intersection point
nearest the sensor corresponds to the real-world item that would have stopped the
beam. A comparison of the distance to this point and the threshold gives the out-
put of the sensor. At present, we do not make use of the angle of the encountered
surface or of its reflectance properties, although those features might be added in
the future.
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2-D Vision Systems

Pilot simulates the performance of the Adept 2-D vision system. The way the simu-
lated vision system works is closely related to the way the real vision system works,
even to how it is programmed in the AIM language [11] used by Adept robots. The
following elements of this vision system are simulated:

• The shape and extent of the field of view.
• The stand-off distance and a simple model of focus.
• The time required to perform vision processing (approximate).
• The spatial ordering of results in the queue, in the case of many parts being

found in one image.
• The ability to distinguish parts according to which stable state they are in.
• The inability to recognize parts that are touching or overlapping.
• Within the context of AIM, the ability to update robot goals based on vision

results.

The use of a vision system is well-integrated with the AIM robot programming
system, so implementation of the AIM language in the simulator implies implemen-
tation of vision system emulation. AIM supports several constructs that make the
use of vision easy for robot guidance. Picking parts that are identified visually from
both indexing and tracking conveyors is easily accomplished.

A data structure keeps track of which support surface the vision system is look-
ing at. For all parts supported on that surface, we compute which are within the vision
system’s field of view. We prune out any parts that are too near or too far from the
camera (e.g., out of focus). We prune out any parts that are touching neighboring
parts. From the remaining parts, we choose those which are in the sought-after sta-
ble state and put them in a list. Finally, this list is sorted to emulate the ordering the
Adept vision system uses when multiple parts are found in one scene.

Inspector Sensors

A special class of sensor is provided, called an inspector. The inspector is used to give
a binary output for each part placed in front of it. In Pilot, parts can be tagged with a
defect rate, and inspectors can ferret out the defective parts. Inspectors play the role
of several real-world sensor systems.

Conclusion

As has been mentioned throughout this section, although some simple geometric
algorithms are currently in place in the simulator, there is a need for more and bet-
ter algorithms. In particular, we would like to investigate the possibility of adding a
quasi-static simulation capability for predicting the motion of objects in situations in
which friction effects dominate any inertial effects. This could be used to simulate
parts being pushed or tipped by various actions of end-effectors or other pushing
mechanisms.
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13.4 AUTOMATING SUBTASKS IN OLP SYSTEMS

In this section, we will briefly mention some advanced features that could be inte-
grated into the “baseline” OLP-system concept already presented. Most of these
features accomplish automated planning of some small portion of an industrial
application.

Automatic Robot Placement

One of the most basic tasks that can be accomplished by means of an OLP system is
the determination of the workcell layout so the manipulator(s) can reach all of the
required workpoints. Determining correct robot or workpiece placement by trial and
error is more quickly completed in a simulated world than in the physical cell. An
advanced feature that automates the search for feasible robot or workpiece loca-
tion(s) goes one step further in reducing burden on the user.

Automatic placement can be computed by direct search or (sometimes) by
heuristic-guided search techniques. Most robots are mounted flat on the floor (or ceil-
ing) and have the first rotary joint perpendicular to the floor, so no more is generally
necessary than a search by tessellation of the three-dimensional space of robot-base
placement. The search might optimize some criterion, or might halt upon location of
the first feasible robot or part placement. Feasibility can be defined as collision-free
ability to reach all workpoints (or perhaps be given an even stronger definition).
A reasonable criterion to maximize might be some form of a measure of manipu-
lability, as was discussed in Chapter 8. An implementation using a similar measure
of manipulability has been discussed in [12]. The result of such an automatic place-
ment is a cell in which the robot can reach all of its workpoints in well-conditioned
configurations.

Collision Avoidance and Path Optimization

Research on the planning of collision-free paths [13,14] and the planning of time-
optimal paths [15,16] generates natural candidates for inclusion in an OLP system.
Some related problems that have a smaller scope and a smaller search space are also
of interest. For example, consider the problem of using a six-degree-of-freedom robot
for an arc welding task whose geometry specifies only five degrees of freedom. Auto-
matic planning of the redundant degree of freedom can be used to avoid collisions
and singularities of the robot [17].

Automatic Planning of Coordinated Motion

In many arc welding situations, details of the process require that a certain rela-
tionship between the workpiece and the gravity vector be maintained during the
weld. This results in a two- or three-degree-of-freedom-orienting system on which
the part is mounted, operating simultaneously with the robot and in a coordinated
fashion. In such a system, there could be nine or more degrees of freedom to coor-
dinate. Such systems are generally programmed today by using teaching-pendant
techniques. A planning system that could automatically synthesize the coordinated
motions for such a system might be quite valuable [17,18].
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Force-Control Simulation

In a simulated world in which objects are represented by their surfaces, it is possible
to investigate the simulation of manipulator force-control strategies. This task
involves the difficult problem of modeling some surface properties and expanding
the dynamic simulator to deal with the constraints imposed by various contacting
situations. In such an environment, it might be possible to assess various force-
controlled assembly operations for feasibility [19].

Automatic Scheduling

Along with the geometric problems found in robot programming, there are often
difficult scheduling and communication problems. This is particularly the case if
we expand the simulation beyond a single workcell to a group of workcells. Some
discrete-time simulation systems offer abstract simulation of such systems [20], but
few offer planning algorithms. Planning schedules for interacting processes is a
difficult problem and an area of research [21,22]. An OLP system would serve as an
ideal test bed for such research, and would be immediately enhanced by any useful
algorithms in this area.

Automatic Assessment of Errors and Tolerances

An OLP system might be given some of the capabilities discussed in recent work
in modeling positioning-error sources and the effect of data from imperfect sensors
[23,24]. The world model could be made to include various error bounds and toler-
ancing information, and the system could assess the likelihood of success of various
positioning or assembly tasks. The system might suggest the use and placement of
sensors so as to correct potential problems.

Off-line programming systems are useful in present-day industrial applications
and can serve as a basis for continuing robotics research and development. A large
motivation in developing OLP systems is to fill the gap between the explicitly pro-
grammed systems available today and the task-level systems of tomorrow.
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EXERCISES

13.1 [10] In a sentence or two, define collision detection, collision avoidance, and
collision-free path planning.

13.2 [10] In a sentence or two, define world model, path planning emulation, and
dynamic emulation.

13.3 [10] In a sentence or two, define automatic robot placement, time-optimal paths,
and error-propagation analysis.

13.4 [10] In a sentence or two, define RPL, TLP, and OLP.
13.5 [10] In a sentence or two, define calibration, coordinated motion, and automatic

scheduling.
13.6 [20] Make a chart indicating how the graphic ability of computers has increased

over the past ten years (perhaps in terms of the number of vectors drawn per
second per $10,000 of hardware).

13.7 [20] Make a list of tasks that are characterized by “many operations relative to a
rigid object” and so are candidates for off-line programming.

13.8 [20] Discuss the advantages and disadvantages of using a programming system
that maintains a detailed world model internally.

13.9 [10] List three things to be gained by OLP.
13.10 [15] An STL (for STereoLithography) file uses a triangular mesh to represent the

surface of a 3-D object. This could play a role in a part-description format for
3-D modeling in OLP. If you were working to create such a standard, what other
information would you include in the part format?

13.11 [15] Give one way in which stable-state probabilities can be useful.
13.12 [20] What information would be helpful for automatic robot placement?
13.13 [18] List some error sources that you would include in an OLP simulation of the

sample application described in Section 12.3.

PROGRAMMING EXERCISE (PART 13)

1. Consider the planar shape of a bar with semicircular end caps. We will call this
shape a “capsule.” Write a routine that, given the location of two such capsules,
computes whether they are touching. Note that all surface points of a capsule are
equidistant from a single line segment that might be called its “spine.”

2. Introduce a capsule-shaped object near your simulated manipulator and test for
collisions as you move the manipulator along a path. Use capsule-shaped links for
the manipulator. Report any collisions detected.

3. If time and computer facilities permit, write routines to depict graphically the cap-
sules that make up your manipulator and the obstacles in the workspace.
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A P P E N D I X A

Trigonometric Identities

Formulas for rotation about the principal axes by θ :

RX(θ) =
⎡
⎣

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦ , (A.1)

RY (θ) =
⎡
⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ , (A.2)

RZ(θ) =
⎡
⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦ . (A.3)

Identities having to do with the periodic nature of sine and cosine:

sin θ = − sin(−θ) = − cos(θ + 90◦) = cos(θ − 90◦),

cos θ = cos(−θ) = sin(θ + 90◦) = − sin(θ − 90◦). (A.4)

The sine and cosine for the sum or difference of angles θ1 and θ2:

cos(θ1 + θ2) = c12 = c1c2 − s1s2,

sin(θ1 + θ2) = s12 = c1s2 + s1c2, (A.5)

cos(θ1 − θ2) = c1c2 + s1s2,

sin(θ1 − θ2) = s1c2 − c1s2.

The sum of the squares of the sine and cosine of the same angle is unity:

c2θ + s2θ = 1. (A.6)

If a triangle’s angles are labeled a, b, and c, where angle a is opposite side A,
and so on, then the “law of cosines” is

A2 = B2 + C2 − 2BC cos a. (A.7)

The “tangent of the half angle” substitution:

u = tan
θ

2
,

cos θ = 1 − u2

1 + u2 , (A.8)

sin θ = 2u

1 + u2 .

417
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418 Appendix A Trigonometric Identities

To rotate a vector Q about a unit vector K̂ by θ , use Rodriques’s formula:

Q′ = Q cos θ + sin θ(K̂ × Q) + (1 − cos θ)(K̂ · Q̂)K̂. (A.9)

See Appendix B for equivalent rotation matrices for the 24 angle-set conven-
tions, and Appendix C for some inverse-kinematic identities.
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A P P E N D I X B

The 24 Angle-Set Conventions

The 12 Euler angle sets are given by

RX′Y ′Z′(α, β, γ ) =
⎡
⎣

cβcγ −cβsγ sβ

sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ

−cαsβcγ + sαsγ cαsβsγ + sαcγ cαcβ

⎤
⎦ ,

RX′Z′Y ′(α, β, γ ) =
⎡
⎣

cβcγ −sβ cβsγ

cαsβcγ + sαsγ cαcβ cαsβsγ − sαcγ

sαsβcγ − cαsγ sαcβ sαsβsγ + cαcγ

⎤
⎦ ,

RY ′X′Z′(α, β, γ ) =
⎡
⎣

sαsβsγ + cαcγ sαsβcγ − cαsγ sαcβ

cβsγ cβcγ −sβ

cαsβsγ − sαcγ cαsβcγ + sαsγ cαcβ

⎤
⎦ ,

RY ′Z′X′(α, β, γ ) =
⎡
⎣

cαcβ −cαsβcγ + sαsγ cαsβsγ + sαcγ

sβ cβcγ −cβsγ

−sαcβ sαsβcγ + cαsγ −sαsβsγ + cαcγ

⎤
⎦ ,

RZ′X′Y ′(α, β, γ ) =
⎡
⎣

−sαsβsγ + cαcγ −sαcβ sαsβcγ + cαsγ

cαsβsγ + sαcγ cαcβ −cαsβcγ + sαsγ

−cβsγ sβ cβcγ

⎤
⎦ ,

RZ′Y ′X′(α, β, γ ) =
⎡
⎣

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ −sαsβsγ + cαcγ −sαsβcγ − cαsγ

−sβ cβsγ cβcγ

⎤
⎦ ,

RX′Y ′X′(α, β, γ ) =
⎡
⎣

cβ sβsγ sβcγ

sαsβ −sαcβsγ + cαcγ −sαcβcγ − cαsγ

−cαsβ cαcβsγ + sαcγ cαcβcγ − sαsγ

⎤
⎦ ,

RX′Z′X′(α, β, γ ) =
⎡
⎣

cβ −sβcγ sβsγ

cαsβ cαcβcγ − sαsγ −cαcβsγ − sαcγ

sαsβ sαcβcγ + cαsγ −sαcβsγ + cαcγ

⎤
⎦ ,

RY ′X′Y ′(α, β, γ ) =
⎡
⎣

−sαcβsγ + cαcγ sαsβ sαcβcγ + cαsγ

sβsγ cβ −sβcγ

−cαcβsγ − sαcγ cαsβ cαcβcγ − sαsγ

⎤
⎦ ,

419
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420 Appendix B The 24 Angle-Set Conventions

RY ′Z′Y ′(α, β, γ ) =
⎡
⎣

cαcβcγ − sαsγ −cαsβ cαcβsγ + sαcγ

sβcγ cβ sβsγ

−sαcβcγ − cαsγ sαsβ −sαcβsγ + cαcγ

⎤
⎦ ,

RZ′X′Z′(α, β, γ ) =
⎡
⎣

−sαcβsγ + cαcγ −sαcβcγ − cαsγ sαsβ

cαcβsγ + sαcγ cαcβcγ − sαsγ −cαsβ

sβsγ sβcγ cβ

⎤
⎦ ,

RZ′Y ′Z′(α, β, γ ) =
⎡
⎣

cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

⎤
⎦ .

The 12 fixed angle sets are given by

RXYZ(γ, β, α) =
⎡
⎣

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

⎤
⎦ ,

RXZY (γ, β, α) =
⎡
⎣

cαcβ −cαsβcγ + sαsγ cαsβsγ + sαcγ

sβ cβcγ −cβsγ

−sαcβ sαsβcγ + cαsγ −sαsβsγ + cαcγ

⎤
⎦ ,

RYXZ(γ, β, α) =
⎡
⎣

−sαsβsγ + cαcγ −sαcβ sαsβcγ + cαsγ

cαsβsγ + sαcγ cαcβ −cαsβcγ + sαsγ

−cβsγ sβ cβcγ

⎤
⎦ ,

RYZX(γ, β, α) =
⎡
⎣

cβcγ −sβ cβsγ

cαsβcγ + sαsγ cαcβ cαsβsγ − sαcγ

sαsβcγ − cαsγ sαcβ sαsβsγ + cαcγ

⎤
⎦ ,

RZXY (γ, β, α) =
⎡
⎣

sαsβsγ + cαcγ sαsβcγ − cαsγ sαcβ

cβsγ cβcγ −sβ

cαsβsγ − sαcγ cαsβcγ + sαsγ cαcβ

⎤
⎦ ,

RZYX(γ, β, α) =
⎡
⎣

cβcγ −cβsγ sβ

sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ

−cαsβcγ + sαsγ cαsβsγ + sαcγ cαcβ

⎤
⎦ ,

RXYX(γ, β, α) =
⎡
⎣

cβ sβsγ sβcγ

sαsβ −sαcβsγ + cαcγ −sαcβcγ − cαsγ

−cαsβ cαcβsγ + sαcγ cαcβcγ − sαsγ

⎤
⎦ ,

RXZX(γ, β, α) =
⎡
⎣

cβ −sβcγ sβsγ

cαsβ cαcβcγ − sαsγ −cαcβsγ − sαcγ

sαsβ sαcβcγ + cαsγ −sαcβsγ + cαcγ

⎤
⎦ ,

RYXY (γ, β, α) =
⎡
⎣

−sαcβsγ + cαcγ sαsβ sαcβcγ + cαsγ

sβsγ cβ −sβcγ

−cαcβsγ − sαcγ cαsβ cαcβcγ − sαsγ

⎤
⎦ ,



“runall”
2021/5/7
page 421

�

�

�

�

�

�

�

�

Appendix B The 24 Angle-Set Conventions 421

RYZY (γ, β, α) =
⎡
⎣

cαcβcγ − sαsγ −cαsβ cαcβsγ + sαcγ

sβcγ cβ sβsγ

−sαcβcγ − cαsγ sαsβ −sαcβsγ + cαcγ

⎤
⎦ ,

RZXZ(γ, β, α) =
⎡
⎣

−sαcβsγ + cαcγ −sαcβcγ − cαsγ sαsβ

cαcβsγ + sαcγ cαcβcγ − sαsγ −cαsβ

sβsγ sβcγ cβ

⎤
⎦ ,

RZYZ(γ, β, α) =
⎡
⎣

cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

⎤
⎦ .
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A P P E N D I X C

Some Inverse-Kinematic
Formulas

The single equation
sin θ = a (C.1)

has two solutions, given by

θ = ±Atan2(
√

1 − a2, a). (C.2)

Likewise, given
cos θ = b, (C.3)

there are two solutions:
θ = Atan2(b,±

√
1 − b2). (C.4)

If both (C.1) and (C.3) are given, then there is a unique solution given by

θ = Atan2(a, b). (C.5)

The transcendental equation

a cos θ + b sin θ = 0 (C.6)

has the two solutions
θ = Atan2(a,−b) (C.7)

and
θ = Atan2(−a, b). (C.8)

The equation
a cos θ + b sin θ = c, (C.9)

which we solved in Section 4.5 with the tangent-of-the-half-angle substitutions, is
also solved by

θ = Atan2(b, a) ± Atan2(
√

a2 + b2 − c2, c). (C.10)

The set of equations

a cos θ − b sin θ = c,

a sin θ + b cos θ = d, (C.11)

which was solved in Section 4.4, also is solved by

θ = Atan2(ad − bc, ac + bd). (C.12)

423
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Solutions to Selected Exercises

CHAPTER 2 SPATIAL DESCRIPTIONS AND TRANSFORMATIONS EXERCISES

2.1)

R = rot(z, φ)rot(y, θ)

=
⎡
⎣

Cφ −Sφ 0
Sφ Cφ 0
0 0 1

⎤
⎦

⎡
⎣

Cθ 0 Sθ

0 1 0
−Sθ 0 Cθ

⎤
⎦

=
⎡
⎣

CφCθ −Sφ CφSθ

SφCθ Cφ SφSθ

−Sθ 0 Cθ

⎤
⎦

2.12) Velocity is a “free vector” and will only be affected by rotation, and not by
translation:

AV = A
BR BV =

⎡
⎣

1 0 0
0 0.5 −0.866
0 0.866 0.5

⎤
⎦

⎡
⎣

40
20
60

⎤
⎦

AV = [
40.00 −41.96 47.32

]T

2.27)

A
BT =

⎡
⎢⎢⎣

−1 0 0 3
0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

2.33)

B
CT =

⎡
⎢⎢⎣

−0.866 −0.5 0 3
0 0 +1 0

−0.5 0.866 0 0
0 0 0 1

⎤
⎥⎥⎦

CHAPTER 3 MANIPULATOR KINEMATICS EXERCISES

3.1)

αi−1 ai−1 di

0 0 0

0 L1 0

0 L2 0

425
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0
1T =

⎡
⎢⎢⎣

C1 −S1 0 0
S1 C1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

1
2T =

⎡
⎢⎢⎣

C2 −S2 0 L1
S2 C2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ 2

3T =

⎡
⎢⎢⎣

C3 −S3 0 L2
S3 C3 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

0
3T = 0

1T
1
2T

2
3T =

⎡
⎢⎢⎣

C123 −S123 0 L1C1 + L2C12
S123 C123 0 L1S1 + L2S12

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

where

C123 = cos(θ1 + θ2 + θ3),

S123 = sin(θ1 + θ2 + θ3).

3.8) When {G} = {T }, we have

B
WT W

TT = B
ST

S
GT .

So
W
TT = B

WT −1 B
ST

S
GT .

CHAPTER 4 INVERSE MANIPULATOR KINEMATICS

4.14) No. Pieper’s method gives the closed-form solution for any 3-DOF manipulator
(see his thesis for all the cases).

4.18) 2
4.22) 1

CHAPTER 5 JACOBIANS: VELOCITIES AND STATIC FORCES EXERCISES

5.1) The Jacobian in frame {0} is

◦J (θ) =
[ −L1S1 − L2S12 −L2S12

L1C1 + L2C12 L2C12

]

DET(◦J (θ)) = −(L2C12)(L1S1 + L2S12) + (L2S12)(L1C1 + L2C12),

= −L1L2S1C12 − L2
2S12C12 + L1L2C1S12 + L2

2S12C12,

= L1L2C1S12 − L1L2S1C12 = L1L2(C1S12 − S1C12),

= L1L2S2.

∴ The same result as when you start with 3J (θ), namely, the singular config-
urations are θ2 = 0◦ or 180◦.
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5.8) The Jacobian of this 2-link is

3J (θ) =
[

L1S2 0
L1C2 + L2 L2

]
.

An isotropic point exists if

3J =
[

L2 0
0 L2

]
.

So

L1S2 = L2,

L1C2 + L2 = 0.

Now, S2
2 + C2

2 = 1, so
(

L2
L1

)2 +
(−L2

L1

)2 = 1

or L2
1 = 2L2

2 → L1 = √
2L2.

Under this condition, S2 = 1√
2

= ±.707

and C2 = −.707.
∴ An isotropic point exists if L1 = √

2L2, and in that case it exists when
θ2 = ±135◦.

L1 L2

2135

In this configuration, the manipulator looks momentarily like a Cartesian
manipulator.

5.13)

τ = ◦J T (θ)◦F,

τ =
[ −L1S1 − L2S12 L1C1 + L2C12

−L2S12 L2C12

] [
10

0

]
,

τ1 = −10S1L1 − 10L2S12,

τ2 = −10L2S12.
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CHAPTER 6 MANIPULATOR DYNAMICS EXERCISES

6.1) Use (6.17), but written in polar form, because that is easier. For example, for Izz,

Izz =
∫ H/2

−H/2

∫ 2π

0

∫ R

0
(x2 + y2)pr dr dθ dz.

x = R cos θ, y = R sin θ, x2 + y2 = R2(r2).

Izz =
∫ H/2

−H/2

∫ 2π

0

∫ R

0
pr3dr dθ dz.

X

Z

Y
H

R

Izz = π

2
R4Hp, VOLUME = πr2H

∴ Mass = M = pπr2H ∴ Izz = 1
2MR2

Similarly (only harder) is

Ixx = Iyy = 1
4MR2 + 1

12MH2

From symmetry (or integration),

Ixy = Ixz = Iyz = 0

∴

cI =
⎡
⎣

1
4MR2 + 1

12MH2 0 0
0 1

4MR2 + 1
12MH2 0

0 0 1
2MR2

⎤
⎦

6.12) θ1(t) = Bt + ct2, so

θ̇1 = B + 2ct, θ̈ = 2c,
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so

1ω̇1 = θ̈1ẑ1 = 2cẑ1 =
⎡
⎣

0
0
2c

⎤
⎦ ,

1v̇c1 =
⎡
⎣

0
0
2c

⎤
⎦ ⊗

⎡
⎣

2
0
0

⎤
⎦ +

⎡
⎣

0
0
θ̇1

⎤
⎦ ⊗

⎛
⎝

⎡
⎣

0
0
θ̇1

⎤
⎦ ⊗

⎡
⎣

2
0
0

⎤
⎦

⎞
⎠ ,

=
⎡
⎣

0
4c

0

⎤
⎦ +

⎡
⎣

−2θ̇2
1

0
0

⎤
⎦ ,

1v̇c1 =
⎡
⎣

−2(B + 2ct)2

4c

0

⎤
⎦ .

6.18) Any reasonable F(θ, θ̇) probably has the property that the friction force (or
torque) on joint i depends only on the velocity of joint i, i.e.,

F(θ, θ̇) = [f1(θ, θ̇1) F2(θ, θ̇2) . . . . FN(θ, θ̇N )]T .

Also, each fi(θ, θ̇i ) should be “passive”; i.e., the function should lie in the first
& third quadrants.

Fi

Ui

.

** Solution written by candlelight in aftermath of 7.0 earthquake, Oct. 17, 1989!

CHAPTER 7 TRAJECTORY GENERATION EXERCISES

7.1) For each link of the robot, there are 5 path points in total: 1 initial point, 3 via
points, and 1 goal point. Four segments are required to connect the 5 points
with 5 blend times.
For a five-link robot, total 20 segments are required, and 25 blend times need
to be computed and stored.

7.17) By differentiation,

θ(t) = 5 − 20t2 + 3t3

θ̇ (t) = −40t + 9t2

θ̈ (t) = −40 + 18t

Final velocity and acceleration are evaluated at t = tf = 1

θ̇ (1) = −31◦/s

θ̈ (1) = −22◦/s2
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CHAPTER 8 MANIPULATOR-MECHANISM DESIGN

8.3) Using (8.1), we have

L =
3∑

i=1

(ai−1 + di) = (0 + 0) + (0 + 0) + (0 + (U − L)) = U − L,

W = 4
3
πU3 − 4

3
πL3 = 4

3
π(U3 − L3)

⎧⎨
⎩

a
“hollow”

sphere
.

∴ QL = U − L

3
√

4
3π(U3 − L3)

8.6) From (8.14),

1
KTOTAL

= 1
1000

+ 1
300

= 4.333 × 10−3.

∴ KTOTAL = 230.77
NTM
RAD

8.16) From (8.15),

K = Gπd4

32L
= (0.33 × 7.5 × 1010)(π)(0.001)4

(32)(0.40)
= 0.006135

NTM
RAD

This is very flimsy, because the diameter is 1 mm!

CHAPTER 9 LINEAR CONTROL OF MANIPULATORS

9.2) From (9.5),

S1 = − 3
2 × 1

+
√

32 − 4 × 1 × 2
2 × 1

= −1

S2 = − 3
2 × 1

−
√

32 − 4 × 1 × 2
2 × 1

= −2

This is the case for real and unequal roots (see procedure in Example 9.1).

∴ x(t) = c1e
−t + c2e

−2t

At t = 0 x(0) = 2 = c1 + c2 [1]
ẋ(0) = 0 = −c1 − 2c2 [2]

Solving [1] and [2] simultaneously gives c1 = 4 and c2 = −2.

∴ x(t) = 4e−t − 2e−2t
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9.10) Using (8.23),

keff = 3π(68 × 109)(0.054 − 0.044)

64(0.53)
= 295608

The 1-Kg mass is distributed along the beam. Fig. 9.13 suggests the effective
mass to be:

meff = (0.23)(1) = 0.23

ωres = √
295608/0.23 = 1133.68 rad/sec

9.13) The input shaft appears to be stiffer due to the rigid gear pair:
keff = (800)(102) = 80000

The effective inertia can be found as:
Ieff = 1.2 + (0.05)(102) = 6.2

The resonant frequency due to the flexibility of the shaft is:
ωres = √

80000/6.2 = 113.59 rad/sec

CHAPTER 10 NONLINEAR CONTROL OF MANIPULATORS EXERCISES

10.2) Let τ = ατ ′ + β

α = 2 β = 5θ θ̇ − 13θ̇3 + 5

and τ ′ = θ̈D + Kvė + Kpe

where e = θD − θ

and

Kp = 10,

Kv = 2
√

10.

10.10) Let f = αf ′ + β

with α = 2, β = 5xẋ − 12
and f ′ = ẌD + kvė + kpe, e = XD − X

kp = 20, kv = 2
√

20.

CHAPTER 11 FORCE CONTROL OF MANIPULATORS EXERCISES

11.2) The artificial constraints for the task in question would be

Vz = −a1 Fx = 0
Fy = 0
Nx = 0
Ny = 0
Nz = 0

where a1 is the speed of insertion.
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11.4) Use (5.105) with frames {A} and {B} reversed. First, find B
AT , so invert A

BT :

B
AT =

⎡
⎢⎢⎣

0.866 0.5 0 −8.66
−0.5 0.866 0 5.0

0 0 1 −5.0
0 0 0 1

⎤
⎥⎥⎦

Now,

BF = B
AR AF = [

1 1.73 −3
]T

,

BN = BPAORG ⊗ BF + B
AR AN = [ −6.3 −30.9 −15.8

]T
.

∴ BF = [
1.0 1.73 −3 −6.3 −30.9 −15.8

]T
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Note: Page references with fn notation refer to footnote on that page

Acceleration of a rigid body, 186–187
angular acceleration, 187
linear acceleration, 186–187

Accuracy, 256
Actuation schemes, 267–270

actuator location, 267–268
reduction and transmission

systems, 268–270
Actuator location

direct-drive configuration,
267–268

speed-reduction system, 268
transmission system, 268

Actuator positions, 90
Actuators, 309–310

joint, 17fn
and stiffness, 273–275
vane, 273–274

Actuator space, 90
Actuator vectors, 90
Adaptive control, 345–385
Adept 2-D vision system, 411
Affixments, 389
Algebraic solution, 122, 125–128

by reduction to polynomial,
129–130

Algorithms:
control, 20
nonlinear control, 21

AL language, 385, 391
Alternating current (AC) motors and

stepper motors, 275
Angle-axis representation, 240–241
Angles:

Euler, 54
joint, 13, 79, 205
yaw, 52

Angle-set conventions, 56
Angle sets, 162
Angular acceleration, 187

Angular velocity, 159–162
representations of, 161–162

Angular-velocity matrix, 160
Angular-velocity vector, 155–156, 160

gaining physical insight
concerning, 160–161

Anthropomorphic manipulator, 258
Antialiasing, 309
AR-BASIC (American Cimflex), 385
Armature, 309
ARMII (Advanced Research

Manipulator II)
manipulator arm, 319–320

Arm signature style calibration, 402
Articulated manipulator, 258
Artificial constraints, 362–364
Assembly strategy, 363
Automated subtasks in OLP systems:

automatic assessment of errors
and tolerances, 413

automatic planning of
coordinated motion, 412

automatic robot placement, 412
automatic scheduling, 413
collision avoidance and path

optimization, 412
force-control simulation, 413

Automatic collision detection, 401
Automation, fixed, 9, 22
Autonomous system, 338
Azimuth, 15

Back emf constant, 310
Backlash, 268
Ball-bearing screws, 269, 270
Base frame {B}, 13, 103, 141
Bearing flexibility, 273
Belts, 269

and stiffness, 272
BIBO stability, 307

433
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Bolted joints, and hysteresis, 281
Bottom-up programming, 392–393
Bounded-input, bounded-output

(BIBO) stability, 307
Brushless motors, 274–275

Cables, 269
Calculation, kinematic, 104–105
Calibration matrix, 281
Calibration techniques, 143
Candidate Lyapunov functions, 338
Cartesian-based control systems,

340–345
Cartesian decoupling scheme,

343–345
defined, 340
intuitive schemes of Cartesian

control, 342–343
joint-based schemes compared

with, 340–342
Cartesian configuration space torque

equation, 207–208
Cartesian manipulator, 257–258
Cartesian mass matrix, 206
Cartesian motion, 240
Cartesian paths, geometric problems

with
high joint rates near singularity,

242–243
intermediate points unreachable, 242
start and goal reachable in

different solutions, 243–244
Cartesian space, 13, 90

formulating manipulator
dynamics in, 205–208

Cartesian-space paths, generation of,
245–246

Cartesian-space schemes, 238–239
Cartesian straight-line motion,

239–241
Cartesian state-space equation, 205–207
Cartesian trajectory generation, 19
Cayley’s formula for orthonormal

matrices, 50
Centrifugal force, 201
Chain drives, 269
Characteristic equation, 296

Cincinatti Milacron, 261
Closed-form dynamic equations,

example of, 197–200
Closed-form solutions, 122
Closed-form-solvable manipulators,

130
Closed-loop stiffness, 303
Closed-loop structures, 265–267

Grübler’s formula, 266
Stewart mechanism, 266, 267

Collision-free path planning, 247
Co-located sensor and actuator pairs,

275
Complex roots, 297–300
Computation, 63–64
Computed points, 143
Computed-torque method, 323
Concatenating link transformations,

89–90
Configuration-space equation, 201
Constraints:

artificial, 362–364
force, 359–361
natural, 360–362
position, 361–363
spatial, 224

Continuous vs. discrete time control,
308–309

Control algorithm, 20
Control gains, 303
Control law, 302
Control law partitioning, 304–306
Control theory, 10
Coriolis force, 201
Coulomb friction, 208, 326
Coulomb-friction constant, 208
Critical damping, 297, 324, 335
Cubic polynomials, 225–227

for a path with via points,
227–231

Current amplifier, 310–311
Cycle time, 256
Cylindrical manipulators, 259–260

Damped natural frequency, 299
Damping, effective, 311
Damping ratio, 299
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Deburring, 360
Decoupling, 328
Decoupling control, approximations, 336
Degrees of freedom, 13, 254–255
Denavit–Hartenberg notation, 80
Denavit–Hartenberg parameters, 143
Descriptions, 29–34

of an orientation, 30–32
defined, 29
of a frame, 32–34
of a position, 30

Dextrous workspace, 118
Differentiation:

numerical, 275
of position vectors, 154–155

Direct current (DC) brush motors, 274
Direct-drive configuration, 267–268
Direct-drive manipulator, 312
Direction cosines, 32
Direct kinematics, 117
Discrete-time control, 308–309, 330
Disturbance rejection, 307–309

addition of an integral term, 308
PID control law, 308
steady-state error, 307

Draper Labs, 375
Dual-rate computed-torque

implementation, 331–332
Dynamically simple manipulator, 211
Dynamic emulation, 402–403
Dynamic equations:

configuration-space equation, 201
state-space equation, 200
structure of, 197–200

Dynamics, 17–18
defined, 17

Dynamic simulation, 209–210
Dynamics of manipulators, 185–221

acceleration of a rigid body,
186–187

computation, 210–212
efficiency, 210–211
efficiency of closed forms vs.

iterative form, 211
efficient dynamics for

simulation, 211
memorization scheme, 212

dynamic equations, structure of,
197–200

dynamic simulation, 209–210
Euler’s equation, 191–192
iterative Newton–Euler

dynamic formulation,
193–196

iterative vs. closed form,
196

Lagrangian dynamic
formulation, 202–205

mass distribution, 187–191
Newton’s equation, 191–192
nonrigid body effects, inclusion

of, 208–209
Dynamics of mechanisms, 185

Eccentricity error, 276
Effective damping, 311
Effective inertia, 311
Efficiency:

of closed forms vs. iterative
form, 211

efficient dynamics for
simulation, 211

historical note concerning,
210–211

Elbow manipulator, 258
Elevation, 15
End-effector, 13
End-of-arm tooling, 253
Equivalent angle–axis

representation, 56–60
Error detection/recovery,

393–394
Error space, 306
Euler angles, 54

Z–Y–X, 54–55
Z–Y–Z, 55–56

Euler integration, 209
Euler parameters, 60–61
Euler’s equation, 191–192
Euler’s formula, 298
Euler’s theorem on rotation,

57fn
Event monitors, 390
Explicit programming languages,

385–386
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Feedback, 294
Feedforward nonlinear control,

330–331
Fictitious joints, 255, 261
Finite-element techniques, 273
Fixed angles, X–Y–Z, 52–54
Fixed automation, 9, 22
Flexible bands, 269
Flexible elements in parallel and in

series, 270
Flexure, 281
Foil gauges, 282
Force constraints, 359–361
Force control, 21

hybrid position/force control
problem, 359–360, 365–366

Cartesian manipulator aligned
with constraint frame (C),
370–372

general manipulator, 372–374
variable stiffness, adding,

374–375
industrial-robot control schemes,

375–377
compliance through softening

position gains, 375–376
force sensing, 376–377
passive compliance, 375

industrial robots, application to
assembly tasks, 360

of manipulators, 359–381
of a mass-spring system, 366–370
partially constrained tasks,

framework for control in,
360–365

Force-control law, 21
Force domain, Jacobians in, 174–175
Force-moment transformation, 176
Force sensing, 280–282, 376–377

design issues, 281–282
flexure, 281
hysteresis, 281
limit stops, 281
overload protection, 281

Force-sensing fingers, 280
Forward kinematics, 13
4-quadrant arc tangent, 53fn

Frames, 12, 44
affixing to links, convention for,

80–87
base, 13
compound, 45–46
defined, 33
description of, 32–34
graphical representation of, 47
with standard names, 102–104
tool, 13

Free vectors:
defined, 62
transformation of, 61–63

Friction, 268

Gantry robots, 257
Gear ratio, 268, 269
Gears, 268

and stiffness, 271–272
General frames, mappings involving,

37–39
Generalizing kinematics, 104
Geometric solution, 122, 128–129
Geometric types, 388
GMF S380, 384
Goal frame {G}, 104, 141
Gravity compensation, addition,

335–336
Grinding, 360
growth in use of, 9
Grübler’s formula, 266
Guarded move, 376

Higher-order polynomials, 231–232
High repeatability and accuracy, 256
Homogeneous transform, 38–39, 44
Hybrid control, 21
Hybrid position/force controller, 359
Hybrid position/force control

problem, 359–360, 365–366
Cartesian manipulator aligned

with constraint frame {C},
370–372

general manipulator, 372–374
variable stiffness, adding,

374–375
Hydraulic cylinders, 273–274
Hysteresis, eliminating, 281
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Index pulse, 275
Individual-joint PID control, 334–335
Industrial robot:

applications, 9–10
as automation trend in

manufacturing process, 9
growth in use of, 9

Industrial-robot controller,
architecture of, 315–316

Industrial-robot control schemes,
375–377

compliance through softening
position gains, 375–376

force sensing, 376–377
passive compliance, 375

Industrial-robot control systems,
334–336

decoupling control,
approximations of, 336

gravity compensation, addition
of, 335–336

individual-joint PID control,
334–335

Inertia:
effective, 311
mass moments of, 188
mass products of, 189
moment of, 187
pendulum, 191
principal moments of, 189
tensor, 187, 191

Inertia ellipsoid, 264
Initial conditions, 296
Inspector, 411
Instantaneous axis of rotation, 161
Interactive languages, 400
Interpretations, 44–45
Intuitive schemes of Cartesian

control, 342–343
Inverse-Jacobian controller, 342
Inverse kinematics, 13–15, 117
Inverse manipulator kinematics,

117–151
algebraic solution by reduction

to polynomial, 129–130
algebraic vs. geometric solution,

125–129

computation, 143–144
examples of, 133–141

PUMA 560 (Unimation),
133–137

Yasukawa Motoman L-3,
137–141

manipulator subspace, 123–125
Pieper’s solution when three

axes intersect, 130–133
solvability, 117–122

existence of solutions,
118–119

method of solution, 121–122
multiple solutions, 119–121

Iterative Newton–Euler dynamic
formulation, 193–196

closed-form dynamic equations,
example of, 197–200

dynamics algorithm, 195–196
inclusion of gravity forces in,

196
force/torque acting on a link, 194
inward iterations, 194–195
outward iterations, 193

Jacobian matrix, 153fn
Jacobians, 15, 153–183

defined, 167–168
in the force domain, 174–175
frame of reference, changing, 169
velocity “propagation” from link

to link, 162–167
Jacobian transpose, 175
JARS, 385
Joint actuators, 17
Joint angles, 13, 79, 205
Joint axes, 77
Joint-based schemes compared with,

340–342
Jointed manipulator, 258
Joint offset, 13
Joints, 13

bolted, 281
press-fit, 281
prismatic, 13, 76
revolute, 13, 76
welded, 281
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Joint space, 13, 90, 205
Joint-space paths, generation of,

244–245
Joint-space schemes, 225–238

cubic polynomials, 225–227
cubic polynomials for a path

with via points, 227–231
higher-order polynomials, 231–232
linear function with parabolic

blends, 232–234
for a path with via points, 234–238

Joint torques, 17
Joint variable, 80
Joint vector, 90

KAREL (GMF Robotics), 385
Khatib, O., 374
Kinematic emulation, 401–402
Kinematics, 13–15

calculating, 104–105
defined, 13, 75
link-connection description,

78–80
link description, 75–78
of PUMA 560 (Unimation),

91–96
of two industrial robots, 90–102
of Yasukawa Motoman L-3,

96–102
Kinetically simple manipulator, 211

Lagrangian, defined, 203
Lagrangian dynamic formulation,

202–205
Language translation to target

system, 403–404
Laplace transforms, 296
Leading subscripts/superscripts, in

notation, 24
Lead screws, 269
Length sum, 263
L’Hópital’s rule, 301
Limit stops, 281
Linear acceleration, 186–187
Linear control of manipulators,

293–321
closed-loop control, 294–295

continuous vs. discrete time
control, 308–309

control-law partitioning, 304–306
disturbance rejection, 307–308
feedback, 294
industrial-robot controller,

architecture of, 315–316
second-order linear systems,

295–302
characteristic equation, 296
complex roots, 297–300
control of, 302–304
initial conditions, 296
Laplace transforms, 296
poles, 296
real and equal roots, 300–302
real and unequal roots,

297–298
single joint,

modeling/controlling,
309–315

effective inertia, 311
estimating resonant frequency,

313–314
motor-armature inductance,

310–311
unmodeled flexibility, 312–313

trajectory-following control, 306
Linear-control systems, 293
Linear function with parabolic

blends, 232–234
for a path with via points,

234–238
Linearizing and decoupling control

law, 328
Linearizing control law, 324
Linear position control, 20
Linear velocity, 156–157

simultaneous rotational velocity,
158–159

Line of action, 62
Line vectors, defined, 62
Link-connection description, 78–80

first and last links in the chain,
79–80

intermediate links in the chain, 79
link parameters, 80
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Link-frame assignment, 85
Link length, 77
Link offset, 79
Link parameters, 80

of a three-link planar
manipulator, 84

Links, 13
convention for affixing frames

to, 80–87
first and last links in the chain,

81–82
intermediate links in the

chain, 81
link-frame attachment

procedure, 82
link parameter summary, 82

and stiffness, 272–273
Link transformations:

concatenating, 89–90
derivation of, 88–89

Link twist, 77
Load capacity, 256
Local linearization, 324
Locally degenerate mechanism, 17
Lower pair, 75–76
Low-pass filter, 310–311
Lumped models, 313–314
Lyapunov’s method, 323
Lyapunov’s second (direct) method,

337
Lyapunov stability analysis, 336–340

Manipulability measure, 264
Manipulator control, problem of,

302–303, 327–328
Manipulator kinematics, 75–116

inverse, 117–151
link transformations:

concatenating, 89–90
derivation of, 88–89

“standard” frames, 102–104
Manipulator-mechanism design,

253–282
actuation schemes, 267–270

actuator location, 267–268
reduction/transmission

systems, 268–270

articulated manipulator, 258
basing design on task

requirements, 254–256
accuracy, 256
degrees of freedom, number

of, 254–255
load capacity, 256
repeatability, 256
speed, 256
workspace, 256

Cartesian manipulator, 257–258
closed-loop structures, 265–267
cylindrical configuration,

259–260
force sensing, 280–282
kinematic configuration,

256–263
optical encoders, 275–280
position sensing, 275
redundant structures, 264–267
SCARA configuration, 258–259
spherical configuration, 259
stiffness/deflections, 270–275

actuators, 273–275
belts, 272
flexible elements in parallel

and in series, 270
gears, 271–272
links, 272–273
shafts, 270–271

well-conditioned workspaces,
264

workspace attributes,
quantitative measures of,
263–264

workspace generation, efficiency
of design in terms of, 263

wrist configuration, 260–262
Manipulators, 10

accuracy of, 143
control problems for, 328–329
design, 19–20
dynamics, 17–18, 185–221
force control, 21–22
forward kinematics of, 13
inverse kinematics of, 13–15
kinematics, 75–116
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Manipulators (continued)
linear position control, 20
mechanics and control of, 12–24
nonlinear position control, 20–21
off-line programming and

simulation, 23–24
position and orientation, 12–13
programming robots, 22–23
repeatability, 143
sensors, 19–20
singularities, 15–17
static forces in, 15–17, 171–174
trajectory generation, 18–19
velocities, 15–17
workspace, 118

Manipulator subspace, 123–125
Mappings, 15, 34–39

involving general frames, 37–40
involving rotated frames, 35–37
involving translated frames,

34–35
Mass distribution, 187–191

inertia tensor, 187, 191
mass moments of inertia, 188
mass products of inertia, 189
parallel-axis theorem, 190
principal axes, 189
principal moments of inertia, 189

Mass matrix, 200
Mass moments of inertia, 188
Mass products of inertia, 189
Mechanical impedance, 374
Mechanical manipulators. See

Manipulators
Memorization scheme, 212
Micromanipulators, 265
Model-based portion, 304
Moment of inertia, 187
Motion specification, 389–390
Motoman L-3, 258
Motor-armature inductance, 310–311
Motor torque constant, 309
Mouse, 400
Moving linearization, 324
Multi-input, multi-output (MIMO)

control systems, 295, 328
Multiprocess simulation, 403

Natural constraints, 360–362
Natural frequency, 299
Newton’s equation, 191–192
Noise, 307
Nonautonomous system, 338
Nonlinear control algorithms, 21
Nonlinear control of manipulators,

323–357
adaptive control, 345–352
Cartesian-based control systems,

340–345
Cartesian decoupling scheme,

343–345
defined, 340
intuitive schemes of Cartesian

control, 342–343
joint-based schemes compared

to, 340–342
current industrial-robot control

systems, 334–336
Lyapunov stability analysis,

336–340
manipulators, control problems

for, 328–329
multi-input, multi-output

(MIMO) control systems,
328

nonlinear systems, 324–327
practical considerations,

329–334
dual-rate computed-torque

implementation, 331–332
feedforward nonlinear

control, 330–331
parameters, lack of knowledge

of, 332–334
time required to compute the

model, 329–330
time-varying systems, 324–327

Nonlinear position control, 20–21
Nonproper orthonormal matrices, 50
Nonrigid body effects, 208–209

Coulomb friction, 208
Coulomb-friction constant, 208
viscous friction, 208

Notation, 24–25
Denavit–Hartenberg notation, 80
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for orientation, 153–156
for time-varying positions, 153–156
vector, 25

Numerical differentiation, 275
Numerically controlled (NC) milling

machines, 9
Numerical solutions, 122

Off-line programming (OLP)
systems, 23–24, 397–415

automating subtasks in, 412–413
automatic assessment of

errors and tolerances, 413
automatic planning of

coordinated motion, 412
automatic robot placement,

412
automatic scheduling, 413
collision avoidance and path

optimization, 412
force-control simulation, 413

central issues in, 400–404
defined, 397
dynamic emulation, 402–403
kinematic emulation, 401–402
language translation to target

system, 403–404
multiprocess simulation, 403
path-planning emulation, 402
Pilot simulator, 404–411
sensors, simulation of, 403
3-D modeling, 401
user interface, 400–401
workcell calibration, 404

Once-around error, 276, 278, 280
Open-loop scheme, 294–295
Operating point, 324
Operational point, 22
Operational space, 13fn, 90
Operators, 40–44

rotational, 41–43
transformation, 43–44
translational, 40–41

Optical encoders, 275–280
interpolation process, 276
quadrature arrangement, 276
sources of error, 276

Orientation:
angle-set conventions, 56
description of, 30–32
equivalent angle–axis

representation, 56–60
Euler parameters, 60–61
notation for, 153–156
predefined, 61
proper orthonormal matrices, 50
taught, 61
X–Y–Z fixed angles, 52–54
Z–Y–X Euler angles, 54–55
Z–Y–Z Euler angles, 55–56

Orienting structure, 257
Orthogonal intersecting shafts, 268
Orthonormal matrix, property of the

derivative of, 159
Overdamped system, 297
Overload protection, 281

Parallel-axis theorem, 190
Parallelism, 403
Parallel shafts, 268
Parts-mating tasks, 360
Pascal, 385
Passive compliance, 375
Path generation at run time, 244–246

Cartesian-space paths,
generation of, 245–246

joint-space paths, generation of,
244–245

Path generator, 238
Path planning, 246–247

collision-free, 247
Path-planning emulation, 402
Path-update rate, 223
Pick and place locations, 256
Pick and place operations, 360
PID control law, 308, 315–316
Pilot simulator, 404–411

adjusting probabilities as a
function of drop height,
406–407

alignment of the part during
grasp, computation of, 409

bins, 408
bounce, simulation of, 407–408



“runall”
2021/5/11
page 442

�

�

�

�

�

�

�

�

442 Index

Pilot simulator (continued)
computing which part to grasp,

408
connecting tray

conveyors/sources and
sinks, 410

default grasp location,
computation of, 408–409

findspace algorithm, 408
inspector sensors, 411
part grasping, geometric

algorithms for, 408
part pushing, geometric

algorithms for, 409
part tumbling, geometric

algorithms for, 406–407
physical modeling and

interactive systems, 406
proximity sensors, 410
pushbar, 409
pushing of trays, 410
sensors, geometric algorithms

for, 410
stable-state estimator algorithm,

406
stable-state probabilities, 406
stacking/tangling, simulation of,

408
tray conveyors, geometric

algorithms for, 409–410
2-D vision systems, 411

Pitch, 52
Pneumatic cylinders, 274
Points:

computed, 143
operating, 324
operational, 22
path, 224
pseudo via, 238
taught, 143
TCP (Tool Center Point), 22
through, 238
via, 19, 22, 224, 227–231, 234–238
wrist, 257

Poles, 296
Polynomials:

and closed-form solutions, 130

cubic, 225–227
higher-order, 231–232

Position constraints, 361–362, 366
Position-control law, 21
Position control system, 20
Positioning structure, 257
Position-regulation system, 302–304
Position sensing, 275
Position vector, 30

differentiation of, 154–155
Positive definite matrix, 202
Potentiometers, 275
Predefined orientations, 61
Press-fit joints, and hysteresis, 281
Principal axes, 189
Principal moments of inertia, 189
Prismatic joints, 13, 76
Programming environment, 390
Programming paradigm, 405
Programming robots, 22–23
Proper orthonormal matrices, 50
Proprioceptive sensors, 253
Pseudo via points, 238
PUMA 560 (Unimation), 258, 259,

316, 402
defined, 96–97
inverse manipulator kinematics,

133–137
kinematics of, 90–96
link parameters, 94
solutions, 120–121

Quadratic form, 202

RAPID (ABB Robotics), 385
RCC (remote center compliance),

375
Reachable workspace, 118
Real and equal roots, 300–302
Real and unequal roots, 297–298
Redundancies, 264–265
Redundant degree of freedom,

254–255
Reference inputs, tracking, 309
Remote center compliance (RCC),

375
Repeatability, 143, 256
Repeated roots, 300
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Resolvers, 275
Resonances, 270

structural, 309
unmodeled, 312

Resonant frequency, estimating,
313–314

Revolute joints, 13, 76
Rigid-body dynamics, form of, 328
Robotic manipulation, 29
Robot programming:

levels of, 384–386
teach by showing method, 384

Robot programming languages
(RPLs), 22–23, 383–396,
398

categories of, 385
defined, 383
description of paths with, 246
explicit programming languages,

385–386
problems peculiar to, 391–394

context sensitivity, 392–393
error recovery, 393–394
internal world model vs.

external reality, 391–392
requirements of, 388–391

flow of execution, 390
motion specification, 389–390
programming environment,

390
sensor integration, 391
world modeling, 388–389

robot library for a new
general-purpose language,
385

robot library for an existing
computer language, 385

sample application, 386–388
specialized manipulation

languages, 385
task-level programming

languages, 386, 398
Robots:

gantry, 257
motion of the robot links, 162
programming, 22–23
specialized, 19

tool, position/orientation of, 104
universal, 19

Robust controller, 331
Rodriques’s formula, 68
Roll, 52
Roller chains, 269
Rotary optical encoder, 275
Rotated frames, mappings involving,

35–37
Rotational operators, 41–43
Rotational velocity, 157–158

simultaneous linear velocity,
158–159

Rotation matrix, 31
Rotor, 309
RPR mechanism, 82–83
Run-out error, 276
Run time:

defined, 244
path generation at, 244–246

Sampling rate, 330
SCARA configuration, 258, 259
Second-order linear systems, 295–302

characteristic equation, 296
complex roots, 297–300
control of, 302–304
initial conditions, 296
Laplace transforms, 296
poles, 296
real and equal roots, 300–302
real and unequal roots, 297–298

Semiconductor strain gauges, 282
Sensor integration, 391
Sensors, 19–20

proprioceptive, 253
simulation of, 403
wrist, 280

Servo error, 371, 373
Servo portion, 304, 325, 328, 334
Servo rate, 308
Set-point, 316
Shafts, 270–271
Similarity transform, 68
Simple applications, 360
Simulation, 18
Simulation specific code, 405
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Single joint, modeling/controlling,
309–315

effective inertia, 311
estimating resonant frequency,

313–314
motor-armature inductance,

310–311
unmodeled flexibility, 312–313

Singularities of the mechanism
(singularities), 15, 169–171

workspace-boundary
singularities, 169

workspace-interior singularities,
170

Sink records, 410
Skew shafts, 268
Skew-symmetric matrices, 160
Softening position gains, compliance

through, 375–376
Solvability, 117–122

existence of solutions, 118–119
method of solution, 121–122
multiple solutions, 119–121

SOLVE function, 142
Spatial constraints on motion, 224
Spatial descriptions, 29–34

of an orientation, 30–32
defined, 27
of a frame, 32–34
of a position, 30

Specialized robot, 19
Speed, 256
Speed-reduction system, 268
Spherical configuration, 259
Spline, 19
Spot welding, 360
Spray painting, 360
Stable system, 295
Standard frames, 102–104

base frame {B}, 103, 141
goal frame {G}, 104, 141
location of, 141
station frame {S}, 103, 141
tool frame {T }, 103–104, 141–142
use in a general robot system,

141–142
wrist frame {W }, 103

State-space equation, 200–201
centrifugal force, 201
Coriolis force, 201

Static forces, 171–174
Cartesian transformation of

velocities and, 175–177
Station frame {S}, 103, 141
Stator, 309
Steady-state analysis, 307
Steady-state error, 307
Stewart mechanism, 266, 267
Stiffness:

actuators, 273–275
belts, 272
flexible elements in parallel and

in series, 270
gears, 271–272
links, 272–273
shafts, 270–271

Strain gauges, 280
Structural length index, 263
Structural resonances, 309
Subspace, 123
Sum-of-angle formulas, 95

Tachometers, 275
Tangle factor, 408
Task-level programming languages,

386
Task-oriented space, 90
Task space, 13fn
Taught orientations, 61
Taught point, 143
TCP (Tool Center Point), 22
Teach and playback manipulators,

143
Teach pendant, 316, 384
Temporal attributes of motion, 224
3-D modeling, 401
Three roll wrist, 261
Through points, 238
Time-varying positions, notation for,

153–156
Tool frame {T }, 13, 103–104, 141–142
Tool, position/orientation of, 104
Torque ripple, 310
Tracking reference inputs, 309
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Trailing subscripts/superscripts, in
notation, 24

Trajectory-conversion process,
340–341

Trajectory, defined, 223
Trajectory-following control:

defined, 306
system, 303

Trajectory generation, 18–19,
223–247

Cartesian paths, geometric
problems with, 242–244

Cartesian-space schemes,
238–239

Cartesian straight-line motion,
239–241

joint-space schemes, 225–238
cubic polynomials, 225–227
cubic polynomials for a path

with via points, 227–231
higher-order polynomials,

231–232
linear function with parabolic

blends, 232–234
linear function with parabolic

blends for a path with via
points, 234–238

path description and generation,
223–225

path generation at run time,
244–246

Cartesian-space paths,
generation of, 245–246

joint-space paths, generation
of, 244–245

path planning, 246–247
collision-free, 247

robot programming languages,
246

Transducers, flexibility in, 281
Transformation:

of free vectors, 61–63
order of, 63

Transformation arithmetic, 45–47
compound transformations,

45–46
inverting a transform, 46–47

Transformation operators, 43–44
Transform equations, 47–50
Transform mapping, 44
Transform operators, 44
Translated frames, mappings

involving, 34–35
Translational mapping, 34
Translational operators, 40–41
Transmission system, 268
Transpose-Jacobian controller, 342
Types, 388

Underdamped system, 297
Unit quaternion, 61
Universal robot, 19
Universe coordinate system, 29
Unmodeled flexibility, 312–313
Unmodeled resonances, 312
Unstable performance, 295
UPDATE simulation routine, 319
User interface, 400–401

VAL language, 316, 385
Vane actuators, 273–274
Vector cross-product, 160
Vector notation, 25
Vectors:

actuator, 90
angular, 155–156
position, differentiation of,

154–155
Velocities, Cartesian transformation

of, 175–177
Velocity:

angular, 159–162
linear, 156–157
of a point due to rotating

reference frame, 159–160
rotational, 157–158

Velocity transformation, 176
Via points, 19, 22, 224

cubic polynomials for a path
with, 227–231

linear function with parabolic
blends for a path with via
points, 234–238

Virtual work, 174
Viscous friction, 208
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Welded joints, and hysteresis, 281
Well-conditioned workspaces,

designing, 264
WHERE function, 104
Workcell, 383, 385

calibration, 404
Work envelope, 256
Workspace, 15, 118–119, 256

generation of, efficiency of
design in terms of, 263

and tool-frame transformation,
119

Workspace attributes, quantitative
measures of, 263–264

Workspace-boundary singularities, 169
Workspace-interior singularities, 170
Work volume, 256
World modeling, 352–353, 388–389
Wrist configuration, 260–262

Wrist frame {W }, 103
Wrist-partitioned class of

mechanisms, 257
Wrist point, 257
Wrist sensors, 280

X–Y–Z fixed angles, 52–54

Yasukawa Motoman L-3, 268
defined, 96
inverse manipulator kinematics,

137–141
kinematics of, 96–102
link frames, assignment of, 100
link parameters of, 101

Yaw angles, 52

Z–Y–X Euler angles, 54–55
Z–Y–Z Euler angles, 55–56
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